bims-mecosi Biomed News
on Membrane contact sites
Issue of 2021‒09‒05
four papers selected by
Verena Kohler



  1. Proc Natl Acad Sci U S A. 2021 Sep 07. pii: e2024109118. [Epub ahead of print]118(36):
      Seeds of dicotyledonous plants store proteins in dedicated membrane-bounded organelles called protein storage vacuoles (PSVs). Formed during seed development through morphological and functional reconfiguration of lytic vacuoles in embryos [M. Feeney et al., Plant Physiol. 177, 241-254 (2018)], PSVs undergo division during the later stages of seed maturation. Here, we study the biophysical mechanism of PSV morphogenesis in vivo, discovering that micrometer-sized liquid droplets containing storage proteins form within the vacuolar lumen through phase separation and wet the tonoplast (vacuolar membrane). We identify distinct tonoplast shapes that arise in response to membrane wetting by droplets and derive a simple theoretical model that conceptualizes these geometries. Conditions of low membrane spontaneous curvature and moderate contact angle (i.e., wettability) favor droplet-induced membrane budding, thereby likely serving to generate multiple, physically separated PSVs in seeds. In contrast, high membrane spontaneous curvature and strong wettability promote an intricate and previously unreported membrane nanotube network that forms at the droplet interface, allowing molecule exchange between droplets and the vacuolar interior. Furthermore, our model predicts that with decreasing wettability, this nanotube structure transitions to a regime with bud and nanotube coexistence, which we confirmed in vitro. As such, we identify intracellular wetting [J. Agudo-Canalejo et al., Nature 591, 142-146 (2021)] as the mechanism underlying PSV morphogenesis and provide evidence suggesting that interconvertible membrane wetting morphologies play a role in the organization of liquid phases in cells.
    Keywords:  membrane remodeling; phase separation; plant development; protein storage vacuole; wetting in cells
    DOI:  https://doi.org/10.1073/pnas.2024109118
  2. STAR Protoc. 2021 Sep 17. 2(3): 100752
      The endoplasmic reticulum (ER) plays a central role in lipid homeostasis, but the role of individual ER subdomains in lipid biology has not been elucidated. WrappER is a curved wrapping type of rough-ER that establishes extensive contacts with almost every mitochondria of the hepatocyte in the mouse liver. Here, we describe a protocol for isolation of fractions enriched in wrappER-associated mitochondria from the mouse liver. We also provide techniques for assessing its quality by electron microscopy and biochemical/proteomic analysis. For complete information on the use and execution of this protocol, please refer to Anastasia et al. (2021).
    Keywords:  Cell Biology; Cell separation/fractionation; Metabolism; Protein Biochemistry
    DOI:  https://doi.org/10.1016/j.xpro.2021.100752
  3. Front Immunol. 2021 ;12 723683
      Mitofusin 2 (MFN2) is a mitochondrial outer membrane GTPase, which modulates mitochondrial fusion and affects the interaction between endoplasmic reticulum and mitochondria. Here, we explored how MFN2 influences mitochondrial functions and inflammatory responses towards zymosan in primary human macrophages. A knockdown of MFN2 by small interfering RNA decreased mitochondrial respiration without attenuating mitochondrial membrane potential and reduced interactions between endoplasmic reticulum and mitochondria. A MFN2 deficiency potentiated zymosan-elicited inflammatory responses of human primary macrophages, such as expression and secretion of pro-inflammatory cytokines interleukin-1β, -6, -8 and tumor necrosis factor α, as well as induction of cyclooxygenase 2 and prostaglandin E2 synthesis. MFN2 silencing also increased zymosan-induced nuclear factor kappa-light-chain-enhancer of activated B cells and mitogen-activated protein kinases inflammatory signal transduction, without affecting mitochondrial reactive oxygen species production. Mechanistic studies revealed that MFN2 deficiency enhanced the toll-like receptor 2-dependent branch of zymosan-triggered responses upstream of inhibitor of κB kinase. This was associated with elevated, cytosolic expression of interleukin-1 receptor-associated kinase 4 in MFN2-deficient cells. Our data suggest pro-inflammatory effects of MFN2 deficiency in human macrophages.
    Keywords:  endoplasmic reticulum ; inflammation; macrophages; mitochondria; mitochondrial dynamics; zymosan
    DOI:  https://doi.org/10.3389/fimmu.2021.723683
  4. Front Physiol. 2021 ;12 732742
      Voltage dependent anion-selective channel (VDAC) is the most abundant protein in the mitochondrial outer membrane. It is a membrane embedded β-barrel protein composed of 19 mostly anti-parallel β-strands that form a hydrophilic pore. Similar to the vast majority of mitochondrial proteins, VDAC is encoded by nuclear DNA, and synthesized on cytosolic ribosomes. The protein is then targeted to the mitochondria while being maintained in an import competent conformation by specific cytosolic factors. Recent studies, using yeast cells as a model system, have unearthed the long searched for mitochondrial targeting signal for VDAC and the role of cytosolic chaperones and mitochondrial import machineries in its proper biogenesis. In this review, we summarize our current knowledge regarding the early cytosolic stages of the biogenesis of VDAC molecules, the specific targeting of VDAC to the mitochondrial surface, and the subsequent integration of VDAC into the mitochondrial outer membrane by the TOM and TOB/SAM complexes.
    Keywords:  TOM complex; VDAC; beta-barrels; chaperones; mitochondria; outer membrane
    DOI:  https://doi.org/10.3389/fphys.2021.732742