bims-mecosi Biomed News
on Membrane contact sites
Issue of 2021‒08‒22
twelve papers selected by
Verena Kohler



  1. J Cell Biol. 2021 Oct 04. pii: e202103176. [Epub ahead of print]220(10):
      Membrane lipids and proteins synthesized in the ER are used for de novo assembly of organelles, such as lipid droplets and peroxisomes. After assembly, the growth of these organelles is supported by ER-derived lipids transferred at membrane contact sites (MCSs). How ER sites for organelle biogenesis and lipid transfer are established and regulated is unclear. Here, we investigate how the ER membrane protein Pex30 and its family members Pex28, Pex29, Pex31, and Pex32 target and function at multiple MCSs. We show that different Pex30 complexes function at distinct ER domains and MCSs. Pex30 targets ER-peroxisome MCSs when bound to Pex28 and Pex32, organizes the nuclear-vacuolar junction when bound to Pex29, and promotes the biogenesis of lipid droplets independently of other family members. Importantly, the reticulon homology domain (RHD) mediates the assembly of the various Pex30 complexes. Given the role of RHD in membrane shaping, our findings offer a mechanistic link between MCS and regulation of membrane curvature.
    DOI:  https://doi.org/10.1083/jcb.202103176
  2. J Cell Sci. 2022 Mar 01. pii: jcs259086. [Epub ahead of print]135(5):
      Membrane contact sites are critical junctures for organelle signaling and communication. Endoplasmic reticulum-plasma membrane (ER-PM) contact sites were the first membrane contact sites to be described; however, the protein composition and molecular function of these sites is still emerging. Here, we leverage yeast and Drosophila model systems to uncover a novel role for the Hobbit (Hob) proteins at ER-PM contact sites. We find that Hobbit localizes to ER-PM contact sites in both yeast cells and the Drosophila larval salivary glands, and this localization is mediated by an N-terminal ER membrane anchor and conserved C-terminal sequences. The C-terminus of Hobbit binds to plasma membrane phosphatidylinositols, and the distribution of these lipids is altered in hobbit mutant cells. Notably, the Hobbit protein is essential for viability in Drosophila, providing one of the first examples of a membrane contact site-localized lipid binding protein that is required for development.
    Keywords:   Drosophila ; S. cerevisiae ; ER–PM contact sites; Hobbit; Phosphatidylinositol; Regulated exocytosis; Salivary gland
    DOI:  https://doi.org/10.1242/jcs.259086
  3. Int Rev Cell Mol Biol. 2021 ;pii: S1937-6448(21)00075-7. [Epub ahead of print]363 169-202
      Glucotoxicity-induced β-cell dysfunction in type 2 diabetes is associated with alterations of mitochondria and the endoplasmic reticulum (ER). Mitochondria and ER form a network in cells that controls cell function and fate. Mitochondria of the pancreatic β cell play a central role in the secretion of insulin in response to glucose through their ability to produce ATP. Both organelles interact at contact sites, defined as mitochondria-associated membranes (MAMs), which were recently implicated in the regulation of glucose homeostasis. Here, we review MAM functions in the cell and we focus on the crosstalk between the ER and Mitochondria in the context of T2D, highlighting the pivotal role played by MAMs especially in β cells through inter-organelle calcium exchange and glucotoxicity-associated β cell dysfunction.
    Keywords:  Calcium; ER; Glucotoxicity; MAMs; Mitochondria; Type 2 Diabetes; β cells
    DOI:  https://doi.org/10.1016/bs.ircmb.2021.06.001
  4. Cell Calcium. 2021 Aug 05. pii: S0143-4160(21)00107-X. [Epub ahead of print]98 102453
      Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) are morpho-functional units, formed at the loci of close apposition of the ER-forming endomembrane and outer mitochondrial membrane (OMM). These sites contribute to fundamental cellular processes including lipid biosynthesis, autophagy, apoptosis, ER-stress and calcium (Ca2+) signalling. At MERCS, Ca2+ ions are transferred from the ER directly to mitochondria through a core protein complex composed of inositol-1,4,5 trisphosphate receptor (InsP3R), voltage-gated anion channel 1 (VDAC1), mitochondrial calcium uniporter (MCU) and adaptor protein glucose-regulated protein 75 (Grp75); this complex is regulated by several associated proteins. Deregulation of ER-mitochondria Ca2+ transfer contributes to pathogenesis of neurodegenerative and other diseases. The efficacy of Ca2+ transfer between ER and mitochondria depends on the protein composition of MERCS, which controls ER-mitochondria interaction regulating, for example, the transversal distance between ER membrane and OMM and the extension of the longitudinal interface between ER and mitochondria. These parameters are altered in neurodegeneration. Here we overview the ER and mitochondrial Ca2+ homeostasis, the composition of ER-mitochondrial Ca2+ transfer machinery and alterations of the ER-mitochondria Ca2+ transfer in three major neurodegenerative diseases: motor neurone diseases, Parkinson disease and Alzheimer's disease.
    Keywords:  Alzheimer's disease; Amyotrophic lateral sclerosis; Endoplasmic reticulum; Mitochondria; Mitochondria-ER contact sites; Motor neurone disease; Parkinson's disease
    DOI:  https://doi.org/10.1016/j.ceca.2021.102453
  5. Life Sci Alliance. 2021 Oct;pii: e202101152. [Epub ahead of print]4(10):
      Non-vesicular lipid transfer at ER and plasma membrane (PM) contact sites (CS) is crucial for the maintenance of membrane lipid homeostasis. Extended synaptotagmins (E-Syts) play a central role in this process as they act as molecular tethers of ER and PM and as lipid transfer proteins between these organelles. E-Syts are proteins constitutively anchored to the ER through an N-terminal hydrophobic segment and bind the PM via a variable number of C-terminal C2 domains. Synaptotagmins (SYTs) are the plant orthologous of E-Syts and regulate the ER-PM communication in response to abiotic stress. Combining different structural and biochemical techniques, we demonstrate that the binding of SYT1 to lipids occurs through a Ca2+-dependent lipid-binding site and by a site for phosphorylated forms of phosphatidylinositol, thus integrating two different molecular signals in response to stress. In addition, we show that SYT1 displays three highly flexible hinge points that provide conformational freedom to facilitate lipid extraction, protein loading, and subsequent transfer between PM and ER.
    DOI:  https://doi.org/10.26508/lsa.202101152
  6. Int Rev Cell Mol Biol. 2021 ;pii: S1937-6448(21)00038-1. [Epub ahead of print]363 49-121
      Cancer is a leading cause of death worldwide. All major tumor suppressors and oncogenes are now recognized to have fundamental connections with metabolic pathways. A hallmark feature of cancer cells is a reprogramming of their metabolism even when nutrients are available. Increasing evidence indicates that most cancer cells rely on mitochondrial metabolism to sustain their energetic and biosynthetic demands. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contact sites (MERCS). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), a family of Ca2+ release channels activated by the ligand IP3. IP3R mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU). Once in the mitochondrial matrix, Ca2+ activates several proteins that stimulate mitochondrial performance. The role of IP3R and MCU in cancer, as well as the other proteins that enable the Ca2+ communication between these two organelles is just beginning to be understood. Here, we describe the function of the main players of the ER mitochondrial Ca2+ communication and discuss how this particular signal may contribute to the rise and development of cancer traits.
    Keywords:  Cancer hallmarks; IP3R; MCUC; Metabolism; Mitochondria-associated membranes (MAMs)
    DOI:  https://doi.org/10.1016/bs.ircmb.2021.03.006
  7. Crit Rev Microbiol. 2021 Aug 17. 1-13
      Membrane contact sites (MCSs) refer to the areas of close proximity between heterologous membranes. A growing body of evidence indicates that MCSs are involved in important cellular functions, such as cellular material transfer, organelle biogenesis, and cell growth. Importantly, the study of MCSs at the bacteria-host interface is an emerging popular research topic. Intracellular bacterial pathogens have evolved a variety of fascinating strategies to interfere with MCSs by injecting effectors into infected host cells. Bacteria-containing vacuoles establish direct physical contact with organelles within the host, ensuring vacuolar membrane integrity and energy supply from host organelles and protecting the vacuoles from the host endocytic pathway and lysosomal degradation. An increasing number of bacterial effectors from various bacterial pathogens hijack components of host MCSs to form the vacuole-organelle MCSs for material exchange. MCS-related events have been identified as new mechanisms of microbial pathogenesis to greatly improve bacterial survival and replication within host cells. In this review, we will discuss the recent advances in MCSs at the bacteria-host interface, focussing on the roles of MCSs mediated by bacterial effectors in microbial pathogenesis.
    Keywords:  Membrane contact sites; bacteria-containing vacuoles; bacteria-host interface; bacterial effectors; microbial pathogenesis
    DOI:  https://doi.org/10.1080/1040841X.2021.1961678
  8. PLoS Genet. 2021 Aug;17(8): e1009727
      Vps13 family proteins are proposed to function in bulk lipid transfer between membranes, but little is known about their regulation. During sporulation of Saccharomyces cerevisiae, Vps13 localizes to the prospore membrane (PSM) via the Spo71-Spo73 adaptor complex. We previously reported that loss of any of these proteins causes PSM extension and subsequent sporulation defects, yet their precise function remains unclear. Here, we performed a genetic screen and identified genes coding for a fragment of phosphatidylinositol (PI) 4-kinase catalytic subunit and PI 4-kinase noncatalytic subunit as multicopy suppressors of spo73Δ. Further genetic and cytological analyses revealed that lowering PI4P levels in the PSM rescues the spo73Δ defects. Furthermore, overexpression of VPS13 and lowering PI4P levels synergistically rescued the defect of a spo71Δ spo73Δ double mutant, suggesting that PI4P might regulate Vps13 function. In addition, we show that an N-terminal fragment of Vps13 has affinity for the endoplasmic reticulum (ER), and ER-plasma membrane (PM) tethers localize along the PSM in a manner dependent on Vps13 and the adaptor complex. These observations suggest that Vps13 and the adaptor complex recruit ER-PM tethers to ER-PSM contact sites. Our analysis revealed that involvement of a phosphoinositide, PI4P, in regulation of Vps13, and also suggest that distinct contact site proteins function cooperatively to promote de novo membrane formation.
    DOI:  https://doi.org/10.1371/journal.pgen.1009727
  9. Int Rev Cell Mol Biol. 2021 ;pii: S1937-6448(21)00019-8. [Epub ahead of print]363 21-47
      Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease without appropriate cure. One of the main reasons for the lack of a proper pharmacotherapy in ALS is the narrow knowledge on the molecular causes of the disease. In this respect, the identification of dysfunctional pathways in ALS is now considered a critical medical need. Among the causative factors involved in ALS, Ca2+ dysregulation is one of the most important pathogenetic mechanisms of the disease. Of note, Ca2+ dysfunction may induce, directly or indirectly, motor neuron degeneration and loss. Interestingly, both familial (fALS) and sporadic ALS (sALS) share the progressive dysregulation of Ca2+ homeostasis as a common noxious mechanism. Mechanicistically, Ca2+ dysfunction involves both plasma membrane and intracellular mechanisms, including AMPA receptor (AMPAR)-mediated excitotoxicity, voltage-gated Ca2+ channels (VGCCs) and Ca2+ transporter dysregulation, endoplasmic reticulum (ER) Ca2+ deregulation, mitochondria-associated ER membranes (MAMs) dysfunction, lysosomal Ca2+ leak, etc. Here, a comprehensive analysis of the main pathways involved in the dysregulation of Ca2+ homeostasis has been reported with the aim to focus the attention on new putative druggable targets.
    Keywords:  ALS; ALS preclinical models; Ca(2+) dysregulation; ER stress; Excitotoxicity; Organellar Ca(2+)
    DOI:  https://doi.org/10.1016/bs.ircmb.2021.02.014
  10. Bio Protoc. 2021 Jul 20. 11(14): e4087
      The crucial role of hexokinase 2 (HK2) in the metabolic rewiring of tumors is now well established, which makes it a suitable target for the design of novel therapies. However, hexokinase activity is central to glucose utilization in all tissues; thus, enzymatic inhibition of HK2 can induce severe adverse effects. In an effort to find a selective anti-neoplastic strategy, we exploited an alternative approach based on HK2 detachment from its location on the outer mitochondrial membrane. We designed a HK2-targeting peptide named HK2pep, corresponding to the N-terminal hydrophobic domain of HK2 and armed with a metalloprotease cleavage sequence and a polycation stretch shielded by a polyanion sequence. In the tumor microenvironment, metalloproteases unleash polycations to allow selective plasma membrane permeation in neoplastic cells. HK2pep delivery induces the detachment of HK2 from mitochondria-associated membranes (MAMs) and mitochondrial Ca2+ overload caused by the opening of inositol-3-phosphate receptors on the endoplasmic reticulum (ER) and Ca2+ entry through the plasma membrane leading to Ca2+-mediated calpain activation and mitochondrial depolarization. As a result, HK2pep rapidly elicits death of diverse tumor cell types and dramatically reduces in vivo tumor mass. HK2pep does not affect hexokinase enzymatic activity, avoiding any noxious effect on non-transformed cells. Here, we make available a detailed protocol for the use of HK2pep and to investigate its biological effects, providing a comprehensive panel of assays to quantitate both HK2 enzymatic activity and changes in mitochondrial functions, Ca2+ flux, and cell viability elicited by HK2pep treatment of tumor cells. Graphical abstract: Flowchart for the analysis of the effects of HK2 detachment from MAMs.
    Keywords:   Ca2+; Anti-neoplastic strategy; Cancer; Cell-penetrating peptide; Hexokinase 2; Mitochondria; Mitochondria-associated membranes
    DOI:  https://doi.org/10.21769/BioProtoc.4087
  11. Int Rev Cell Mol Biol. 2021 ;pii: S1937-6448(21)00025-3. [Epub ahead of print]363 1-20
      Cellular homeostasis is essential for healthy functioning of cells and tissues as well as proper organ development and maintenance. A disruption in cellular homeostasis triggers stress responses including the unfolded protein response (UPR), an endoplasmic reticulum (ER) stress coping response. There is increasing evidence that Ca2+ signaling plays a pivotal role in stress responses, as Ca2+ is involved many cellular activities. The ER is the main Ca2+ storage organelle and the source of Ca2+ for intracellular signaling. The ER is equipped with a variety of stress sensors and contains many Ca2+ handling proteins that support a role for Ca2+ in stress sensing and in coordinating strategies required to cope with cellular stress. Maintenance of ER Ca2+ homeostasis is therefore vital in sustaining cellular functions especially during times of cellular stress. Here we focus on selected aspects of ER Ca2+ homeostasis, its links to ER stress, and activation of the ER stress coping response.
    Keywords:  Chaperones; Endoplasmic reticulum; Membrane contact site; Ryanodine receptor; Sarcoplasmic reticulum; Unfolded protein response
    DOI:  https://doi.org/10.1016/bs.ircmb.2021.03.003
  12. Cell Death Dis. 2021 Aug 16. 12(9): 794
      Cellular therapy exerts profound therapeutic potential for curing a broad spectrum of diseases. Adult stem cells reside within a specified dynamic niche in vivo, which is essential for continuous tissue homeostatic maintenance through balancing self-renewal with lineage selection. Meanwhile, adult stem cells may be multipotent or unipotent, and are present in both quiescent and actively dividing states in vivo of the mammalians, which may switch to each other state in response to biophysical cues through mitochondria-mediated mechanisms, such as alterations in mitochondrial respiration and metabolism. In general, stem cells facilitate tissue repair after tissue-specific homing through various mechanisms, including immunomodulation of local microenvironment, differentiation into functional cells, cell "empowerment" via paracrine secretion, immunoregulation, and intercellular mitochondrial transfer. Interestingly, cell-source-specific features have been reported between different tissue-derived adult stem cells with distinct functional properties due to the different microenvironments in vivo, as well as differential functional properties in different tissue-derived stem cell-derived extracellular vehicles, mitochondrial metabolism, and mitochondrial transfer capacity. Here, we summarized the current understanding on roles of mitochondrial dynamics during stem cell homeostasis and aging, and lineage-specific differentiation. Also, we proposed potential unique mitochondrial molecular signature features between different source-derived stem cells and potential associations between stem cell aging and mitochondria-endoplasmic reticulum (ER) communication, as well as potential novel strategies for anti-aging intervention and healthy aging.
    DOI:  https://doi.org/10.1038/s41419-021-03912-4