bims-mecosi Biomed News
on Membrane contact sites
Issue of 2021‒07‒25
six papers selected by
Verena Kohler



  1. J Cell Biol. 2021 Oct 04. pii: e202010016. [Epub ahead of print]220(10):
      Sterols are unevenly distributed within cellular membranes. How their biosynthetic and transport machineries are organized to generate heterogeneity is largely unknown. We previously showed that the yeast sterol transporter Osh2 is recruited to endoplasmic reticulum (ER)-endocytic contacts to facilitate actin polymerization. We now find that a subset of sterol biosynthetic enzymes also localizes at these contacts and interacts with Osh2 and the endocytic machinery. Following the sterol dynamics, we show that Osh2 extracts sterols from these subdomains, which we name ERSESs (ER sterol exit sites). Further, we demonstrate that coupling of the sterol synthesis and transport machineries is required for endocytosis in mother cells, but not in daughters, where plasma membrane loading with accessible sterols and endocytosis are linked to secretion.
    DOI:  https://doi.org/10.1083/jcb.202010016
  2. Biochim Biophys Acta Mol Cell Res. 2021 Jul 15. pii: S0167-4889(21)00153-1. [Epub ahead of print] 119099
      Cellular senescence generates a permanent cell cycle arrest, characterized by apoptosis resistance and a pro-inflammatory senescence-associated secretory phenotype (SASP). Physiologically, senescent cells promote tissue remodeling during development and after injury. However, when accumulated over a certain threshold as happens during aging or after cellular stress, senescent cells contribute to the functional decline of tissues, participating in the generation of several diseases. Cellular senescence is accompanied by increased mitochondrial metabolism. How mitochondrial function is regulated and what role it plays in senescent cell homeostasis is poorly understood. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contacts (MERCs). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate receptors (IP3Rs), a family of three Ca2+ release channels activated by a ligand (IP3). IP3R-mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU), where it modulates the activity of several enzymes and transporters impacting its bioenergetic and biosynthetic function. Here, we review the possible connection between ER to mitochondria Ca2+ transfer and senescence. Understanding the pathways that contribute to senescence is essential to reveal new therapeutic targets that allow either delaying senescent cell accumulation or reduce senescent cell burden to alleviate multiple diseases.
    Keywords:  MERCs; calcium; metabolism; mitochondria; senescence
    DOI:  https://doi.org/10.1016/j.bbamcr.2021.119099
  3. Nat Commun. 2021 Jul 23. 12(1): 4493
      Neuronal function relies on careful coordination of organelle organization and transport. Kinesin-1 mediates transport of the endoplasmic reticulum (ER) and lysosomes into the axon and it is increasingly recognized that contacts between the ER and lysosomes influence organelle organization. However, it is unclear how organelle organization, inter-organelle communication and transport are linked and how this contributes to local organelle availability in neurons. Here, we show that somatic ER tubules are required for proper lysosome transport into the axon. Somatic ER tubule disruption causes accumulation of enlarged and less motile lysosomes at the soma. ER tubules regulate lysosome size and axonal translocation by promoting lysosome homo-fission. ER tubule - lysosome contacts often occur at a somatic pre-axonal region, where the kinesin-1-binding ER-protein P180 binds microtubules to promote kinesin-1-powered lysosome fission and subsequent axonal translocation. We propose that ER tubule - lysosome contacts at a pre-axonal region finely orchestrate axonal lysosome availability for proper neuronal function.
    DOI:  https://doi.org/10.1038/s41467-021-24713-5
  4. EMBO Rep. 2021 Jul 23. e51954
      Mfn2 is a mitochondrial fusion protein with bioenergetic functions implicated in the pathophysiology of neuronal and metabolic disorders. Understanding the bioenergetic mechanism of Mfn2 may aid in designing therapeutic approaches for these disorders. Here we show using endoplasmic reticulum (ER) or mitochondria-targeted Mfn2 that Mfn2 stimulation of the mitochondrial metabolism requires its localization in the ER, which is independent of its fusion function. ER-located Mfn2 interacts with mitochondrial Mfn1/2 to tether the ER and mitochondria together, allowing Ca2+ transfer from the ER to mitochondria to enhance mitochondrial bioenergetics. The physiological relevance of these findings is shown during neurite outgrowth, when there is an increase in Mfn2-dependent ER-mitochondria contact that is necessary for correct neuronal arbor growth. Reduced neuritic growth in Mfn2 KO neurons is recovered by the expression of ER-targeted Mfn2 or an artificial ER-mitochondria tether, indicating that manipulation of ER-mitochondria contacts could be used to treat pathologic conditions involving Mfn2.
    Keywords:  Ca2+; ER-mitochondria tethering; Mfn2; neuritic growth
    DOI:  https://doi.org/10.15252/embr.202051954
  5. J Plant Physiol. 2021 Jul 15. pii: S0176-1617(21)00112-7. [Epub ahead of print]264 153473
      Plant endoplasmic reticulum (ER) remodelling is likely to be important for its function in targeted protein secretion, organelle interaction and signal exchange. It has been known for decades that the structure and movement of the ER network is mainly regulated by the actin cytoskeleton through actin motor proteins and membrane-cytoskeleton adaptors. Recent discoveries also revealed alternative pathways that influence ER movement, through a microtubule-based machinery. Therefore, plants utilize both cytoskeletal components to drive ER dynamics, a process that is likely to be dependent on the cell type and the developmental stages. On the other hand, the ER membrane also has a direct effect towards the organization of the cytoskeletal network and disrupting the tethering factors at the ER-PM interface also rearranges the cytoskeletal structure. However, the influence of the ER network on the cytoskeleton organization has not been studied. In this review, we will provide an overview of the ER-cytoskeleton network in plants, and discuss the most recent discoveries in the field.
    Keywords:  Actin cytoskeleton; Cytoskeleton-membrane interaction; ER-PM contact Sites; Endoplasmic reticulum; Microtubules
    DOI:  https://doi.org/10.1016/j.jplph.2021.153473
  6. Biochim Biophys Acta Biomembr. 2021 Jul 19. pii: S0005-2736(21)00149-8. [Epub ahead of print] 183700
      TANGO1 protein facilitates the endoplasmic reticulum (ER) export of large cargoes that cannot be accommodated in 60 nm transport vesicles. It assembles into a ring in the plane of the ER membrane to create a distinct domain. Its lumenal portion collects and sorts folded cargoes while its cytoplasmic domains collar COPII coats, recruit retrograde COPI-coated membranes that fuse within the TANGO1 ring, thus opening a tunnel for cargo transfer from the ER into a growing export conduit. This mode of cargo transfer bypasses the need for vesicular intermediates and is used to export the most abundant and bulky cargoes. The evolution of TANGO1 and its activities defines the difference between yeast and animal early secretory pathways.
    Keywords:  COPII; Chylomicron; Collagen; ER exit sites; Golgi; Mucins; Protein secretion; TALI; TANGO1; Vesicles
    DOI:  https://doi.org/10.1016/j.bbamem.2021.183700