bims-mascan Biomed News
on Mass spectrometry in cancer research
Issue of 2024–02–04
twenty-two papers selected by
Giovanny Rodríguez Blanco, Uniklinikum Graz



  1. J Chromatogr A. 2024 Jan 28. pii: S0021-9673(24)00064-5. [Epub ahead of print]1717 464691
      Mass spectrometry-based metabolomics with stable isotope labeling (SIL) is an established tool for sensitive and precise analyses of tissue metabolism, its flux, and pathway activities in diverse models of physiology and disease. Despite the simplicity and broad applicability of deuterium (2H)-labeled precursors for tracing metabolic pathways with minimal biological perturbations, they are rarely employed in LC-MS/MS-guided metabolomics. In this study, we have developed a LC-MS/MS-guided workflow to trace deuterium metabolism in mouse organs following 2H7 -glucose infusion. The workflow includes isotopically labeled glucose infusion, mouse organ isolation and metabolite extraction, zwitterion-based hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution tandem mass spectrometry, targeted data acquisition for sensitive detection of deuterated metabolites, a spectral library of over 400 metabolite standards, and multivariate data analysis with pathway mapping. The optimized method was validated for matrix effects, normalization, and quantification to provide both tissue metabolomics and tracking the in-vivo metabolic fate of deuterated glucose through key metabolic pathways. We quantified more than 100 metabolites in five major mouse organ tissues (liver, kidney, brain, brown adipose tissue, and heart). Furthermore, we mapped isotopologues of deuterated metabolites from glycolysis, tricarboxylic acid (TCA) cycle, and amino acid pathways, which are significant for studying both health and various diseases. This study will open new avenues in LC-MS based analysis of 2H-labeled tissue metabolism research in animal models and clinical settings.
    Keywords:  Deuterium tracing; LC-MS; Metabolic flux; Metabolomics; Tissue metabolism
    DOI:  https://doi.org/10.1016/j.chroma.2024.464691
  2. Nat Biotechnol. 2024 Feb 01.
      Mass spectrometry (MS)-based proteomics aims to characterize comprehensive proteomes in a fast and reproducible manner. Here we present the narrow-window data-independent acquisition (nDIA) strategy consisting of high-resolution MS1 scans with parallel tandem MS (MS/MS) scans of ~200 Hz using 2-Th isolation windows, dissolving the differences between data-dependent and -independent methods. This is achieved by pairing a quadrupole Orbitrap mass spectrometer with the asymmetric track lossless (Astral) analyzer which provides >200-Hz MS/MS scanning speed, high resolving power and sensitivity, and low-ppm mass accuracy. The nDIA strategy enables profiling of >100 full yeast proteomes per day, or 48 human proteomes per day at the depth of ~10,000 human protein groups in half-an-hour or ~7,000 proteins in 5 min, representing 3× higher coverage compared with current state-of-the-art MS. Multi-shot acquisition of offline fractionated samples provides comprehensive coverage of human proteomes in ~3 h. High quantitative precision and accuracy are demonstrated in a three-species proteome mixture, quantifying 14,000+ protein groups in a single half-an-hour run.
    DOI:  https://doi.org/10.1038/s41587-023-02099-7
  3. Lipids Health Dis. 2024 Feb 01. 23(1): 35
      Lipid metabolism in cancer cells has garnered increasing attention in recent decades. Cancer cells thrive in hypoxic conditions, nutrient deficiency, and oxidative stress and cannot be separated from alterations in lipid metabolism. Therefore, cancer cells exhibit increased lipid metabolism, lipid uptake, lipogenesis and storage to adapt to a progressively challenging environment, which contribute to their rapid growth. Lipids aid cancer cell activation. Cancer cells absorb lipids with the help of transporter and translocase proteins to obtain energy. Abnormal levels of a series of lipid synthases contribute to the over-accumulation of lipids in the tumor microenvironment (TME). Lipid reprogramming plays an essential role in the TME. Lipids are closely linked to several immune cells and their phenotypic transformation. The reprogramming of tumor lipid metabolism further promotes immunosuppression, which leads to immune escape. This event significantly affects the progression, treatment, recurrence, and metastasis of cancer. Therefore, the present review describes alterations in the lipid metabolism of immune cells in the TME and examines the connection between lipid metabolism and immunotherapy.
    Keywords:  Immunotherapy; Lipid metabolism; Programmed cell death protein 1; Targeted therapy; Tumor microenvironment
    DOI:  https://doi.org/10.1186/s12944-024-02024-0
  4. J Vis Exp. 2024 Jan 12.
      Histone proteins are highly abundant and conserved among eukaryotes and play a large role in gene regulation as a result of structures known as posttranslational modifications (PTMs). Identifying the position and nature of each PTM or pattern of PTMs in reference to external or genetic factors allows this information to be statistically correlated with biological responses such as DNA transcription, replication, or repair. In the present work, a high-throughput analytical protocol for the detection of histone PTMs from biological samples is described. The use of complementary liquid chromatography, trapped ion mobility spectrometry, and time-of-flight mass spectrometry (LC-TIMS-ToF MS/MS) enables the separation and PTM assignment of the most biologically relevant modifications in a single analysis. The described approach takes advantage of recent developments in dependent data acquisition (DDA) using parallel accumulation in the mobility trap, followed by sequential fragmentation and collision-induced dissociation. Histone PTMs are confidently assigned based on their retention time, mobility, and fragmentation pattern.
    DOI:  https://doi.org/10.3791/65589
  5. Exp Hematol Oncol. 2024 Jan 29. 13(1): 10
      Metabolic reprogramming is an emerging hallmark of cancer cells, enabling them to meet increased nutrient and energy demands while withstanding the challenging microenvironment. Cancer cells can switch their metabolic pathways, allowing them to adapt to different microenvironments and therapeutic interventions. This refers to metabolic heterogeneity, in which different cell populations use different metabolic pathways to sustain their survival and proliferation and impact their response to conventional cancer therapies. Thus, targeting cancer metabolic heterogeneity represents an innovative therapeutic avenue with the potential to overcome treatment resistance and improve therapeutic outcomes. This review discusses the metabolic patterns of different cancer cell populations and developmental stages, summarizes the molecular mechanisms involved in the intricate interactions within cancer metabolism, and highlights the clinical potential of targeting metabolic vulnerabilities as a promising therapeutic regimen. We aim to unravel the complex of metabolic characteristics and develop personalized treatment approaches to address distinct metabolic traits, ultimately enhancing patient outcomes.
    Keywords:  Heterogeneous treatment effect; Metabolic exchange and integration; Metabolic heterogeneity; Metabolic patterns and regulation; Tumor heterogeneity
    DOI:  https://doi.org/10.1186/s40164-024-00482-x
  6. Proteomics. 2024 Feb 01. e2300339
      Detergent-based workflows incorporating sodium dodecyl sulfate (SDS) necessitate additional steps for detergent removal ahead of mass spectrometry (MS). These steps may lead to variable protein recovery, inconsistent enzyme digestion efficiency, and unreliable MS signals. To validate a detergent-based workflow for quantitative proteomics, we herein evaluate the precision of a bottom-up sample preparation strategy incorporating cartridge-based protein precipitation with organic solvent to deplete SDS. The variance of data-independent acquisition (SWATH-MS) data was isolated from sample preparation error by modelling the variance as a function of peptide signal intensity. Our SDS-assisted cartridge workflow yield a coefficient of variance (CV) of 13%-14%. By comparison, conventional (detergent-free) in-solution digestion increased the CV to 50%; in-gel digestion provided lower CVs between 14% and 20%. By filtering peptides predicting to display lower precision, we further enhance the validity of data in global comparative proteomics. These results demonstrate the detergent-based precipitation workflow is a reliable approach for in depth, label-free quantitative proteome analysis.
    Keywords:  precipitation; quantitation; reproducibility; sample preparation; sodium dodecyl sulfate
    DOI:  https://doi.org/10.1002/pmic.202300339
  7. Clin Proteomics. 2024 Jan 30. 21(1): 6
      Routine measurement of cancer biomarkers is performed for early detection, risk classification, and treatment monitoring, among other applications, and has substantially contributed to better clinical outcomes for patients. However, there remains an unmet need for clinically validated assays of cancer protein biomarkers. Protein tumor markers are of particular interest since proteins carry out the majority of biological processes and thus dynamically reflect changes in cancer pathophysiology. Mass spectrometry-based targeted proteomics is a powerful tool for absolute peptide and protein quantification in biological matrices with numerous advantages that make it attractive for clinical applications in oncology. The use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) based methodologies has allowed laboratories to overcome challenges associated with immunoassays that are more widely used for tumor marker measurements. Yet, clinical implementation of targeted proteomics methodologies has so far been limited to a few cancer markers. This is due to numerous challenges associated with paucity of robust validation studies of new biomarkers and the labor-intensive and operationally complex nature of LC-MS/MS workflows. The purpose of this review is to provide an overview of targeted proteomics applications in cancer, workflows used in targeted proteomics, and requirements for clinical validation and implementation of targeted proteomics assays. We will also discuss advantages and challenges of targeted MS-based proteomics assays for clinical cancer biomarker analysis and highlight some recent developments that will positively contribute to the implementation of this technique into clinical laboratories.
    Keywords:  Cancer biomarker; Clinical proteomics; LC–MS/MS; Liquid biopsy; Mass spectrometry; Targeted proteomics
    DOI:  https://doi.org/10.1186/s12014-024-09452-1
  8. J Proteome Res. 2024 Feb 01.
      We present RawVegetable 2.0, a software tailored for assessing mass spectrometry data quality and fine-tuned for cross-linking mass spectrometry (XL-MS) applications. Building upon the capabilities of its predecessor, RawVegetable 2.0 introduces four main modules, each providing distinct and new functionalities: 1) Pair Finder, which identifies ion doublets characteristic of cleavable cross-linking experiments; 2) Diagnostic Peak Finder, which locates potential reporter ions associated with a specific cross-linker; 3) Precursor Signal Ratio, which computes the ratio between precursor intensity and the total signal in an MS/MS scan; and 4) Xrea, which evaluates spectral quality by analyzing the heterogeneity of peak intensities within a spectrum. These modules collectively streamline the process of optimizing mass spectrometry data acquisition for both Proteomics and XL-MS experiments. RawVegetable 2.0, along with a comprehensive tutorial is freely accessible for academic use at: http://patternlabforproteomics.org/rawvegetable2.
    Keywords:  bioinformatics; cross-linking mass spectrometry; quality control
    DOI:  https://doi.org/10.1021/acs.jproteome.3c00791
  9. ISME Commun. 2024 Jan;4(1): ycad006
      Microfluidic capillary electrophoresis-mass spectrometry (CE-MS) is a rapid and highly accurate method to determine isotopomer patterns in isotopically labeled compounds. Here, we developed a novel method for tracer-based metabolomics using CE-MS for underivatized proteinogenic amino acids. The method consisting of a ZipChip CE system and a high-resolution Orbitrap Fusion Tribrid mass spectrometer allows us to obtain highly accurate data from 1 μl of 100 nmol/l amino acids comparable to a mere 1 [Formula: see text] 104-105 prokaryotic cells. To validate the capability of the CE-MS method, we analyzed 16 protein-derived amino acids from a methanogenic archaeon Methanothermobacter thermautotrophicus as a model organism, and the mass spectra showed sharp peaks with low mass errors and background noise. Tracer-based metabolome analysis was then performed to identify the central carbon metabolism in M. thermautotrophicus using 13C-labeled substrates. The mass isotopomer distributions of serine, aspartate, and glutamate revealed the occurrence of both the Wood-Ljungdahl pathway and an incomplete reductive tricarboxylic acid cycle for carbon fixation. In addition, biosynthesis pathways of 15 amino acids were constructed based on the mass isotopomer distributions of the detected protein-derived amino acids, genomic information, and public databases. Among them, the presence of alternative enzymes of alanine dehydrogenase, ornithine cyclodeaminase, and homoserine kinase was suggested in the biosynthesis pathways of alanine, proline, and threonine, respectively. To our knowledge, the novel 13C tracer-based metabolomics using CE-MS can be considered the most efficient method to identify central carbon metabolism and amino acid biosynthesis pathways and is applicable to any kind of isolated microbe.
    Keywords:  13C tracer; capillary electrophoresis-tandem mass spectrometry (CE-MS); metabolomics; methanogen
    DOI:  https://doi.org/10.1093/ismeco/ycad006
  10. Nat Protoc. 2024 Jan 30.
      Tau protein aggregation is associated with posttranslational modifications (PTMs) in 75% of all dementia cases. The distribution of tau pathology and the presence of specific tau phosphorylation sites of interest are typically visualized and measured using antibodies. However, previous knowledge of the target epitopes is required. Additionally, antibodies can be used in a semi-quantitative manner but cannot be used to determine the absolute amount of tau or the extent of the modifications at specific sites or domains. Here we present a discovery assay that characterizes the global qualitative and quantitative tau modification landscape of a sample without a priori knowledge. Our workflow uses sarkosyl fractionation to extract the pathological tau species from sample-limited brain specimens, followed by mass spectrometry (MS) to characterize and quantify tau PTMs. The two-step MS-based proteomics approach includes an exploratory tau PTM analysis and a targeted full-length expressed stable isotope-labeled tau assay, which monitors specific unmodified tau peptides using a heavy isotope-labeled internal standard as a reference. This enables the absolute quantification of the respective tau peptides and the total tau amount in the sample, thus providing the modification extent of tau PTMs. This approach provides precise, comprehensive, qualitative and quantitative tau PTM profiling of the sample. It also enables the detailed molecular comparison of tau across multiple experiments, including a comparison between neurodegenerative diseases, stages of the disease, human patient heterogeneity and characterization of animal models. The approach is useful for studying the molecular features of pathological tau in neurodegeneration. The procedure requires 7-8 d and is suitable for users with expertise in targeted and untargeted MS-based protein analysis.
    DOI:  https://doi.org/10.1038/s41596-023-00939-z
  11. J Chromatogr A. 2024 Jan 17. pii: S0021-9673(24)00029-3. [Epub ahead of print]1717 464656
      Metabolomics has become an essential discipline in the study of microbiome, emerging gas chromatography coupled to mass spectrometry as the most mature, robust, and reproducible analytical technique. Silylation is the most widely used chemical derivatization strategy, although it has some limitations. In this regard, alkylation by alkyl chloroformate offers some advantages, such as a rapid reaction, milder conditions, better reproducibility, and the generation of more stable derivatives. However, commercial spectral libraries do not include many of the alkyl derivatives, mainly for polyfunctional metabolites, which can form multiple derivatives. That introduces a huge bias in untargeted metabolomics leading to common errors such as duplicates, unknowns, misidentifications, wrong assignations, and incomplete results from which non-reliable findings and conclusions will be retrieved. For this reason, the purpose of this study is to overcome these shortcomings and to expand the knowledge of metabolites in general and especially those closely related to the gut microbiota through the thorough study of the reactivity of the different functional groups in real matrix derivatized by methyl chloroformate, a common representative alkylation reagent. To this end, a systematic workflow has been developed based on exhaustive structural elucidation, along with computational simulation, and taking advantage of the high sensitivity and high-resolution gas chromatography-mass spectrometry. Several empirical rules have been established according to chemically different entities (free fatty acids, amino acids, polyols, sugars, amines, and polyfunctional groups, etc.) to predict the number of derivatives formed from a single metabolite, as well as their elution order and structure. In this work, some methyl chloroformate derivatives not previously reported as well as the mechanisms to explain them are given. Extremely important is the interconversion of E- and Z- geometric isomers of unsaturated dicarboxylic acids (case of fumaric-maleic and case of citraconic-mesaconic acids), or the formation of cycled derivatives for amino acids, as well as common metabolites, as in the case of serine and cysteine, and many others.
    Keywords:  Alkyl derivatization; Chloroformates; Gas chromatography; High-resolution mass spectrometry; Microbiome
    DOI:  https://doi.org/10.1016/j.chroma.2024.464656
  12. Chem Commun (Camb). 2024 Jan 29.
      Mass spectrometry imaging (MSI) has become increasingly utilized in the analysis of biological molecules. MSI grants the ability to spatially map thousands of molecules within one experimental run in a label-free manner. While MSI is considered by most to be a qualitative method, recent advancements in instrumentation, sample preparation, and development of standards has made quantitative MSI (qMSI) more common. In this feature article, we present a tailored review of recent advancements in qMSI of therapeutics and biomolecules such as lipids and peptides/proteins. We also provide detailed experimental considerations for conducting qMSI studies on biological samples, aiming to advance the methodology.
    DOI:  https://doi.org/10.1039/d3cc05988j
  13. Anal Chem. 2024 Feb 02.
      Mass isotopomer distribution analysis (MIDA) is an analytical technique that measures the synthesis rate of biological polymers using combinatorial probabilities and stable isotope labeling. Over the past few decades, this method has been developed and applied to a wide range of uses that have increased our understanding of metabolism and the etiology and monitoring of disease. There is currently no publicly available piece of software for performing MIDA calculations in a targeted manner without its functionality being limited to a specific use case. We present a cross-platform Python graphical user interface implementation for research to obtain kinetic parameters easily from stable-isotope labeling studies and provide the code and user manual on GitHub.
    DOI:  https://doi.org/10.1021/acs.analchem.3c02211
  14. Expert Rev Proteomics. 2024 Feb 01.
       INTRODUCTION: Cell-surface proteins are extremely important for many cellular events, such as regulating cell-cell communication and cell-matrix interactions. Aberrant alterations in surface protein expression, modification (especially glycosylation), and interactions are directly related to human diseases. Systematic investigation of surface proteins advances our understanding of protein functions, cellular activities, and disease mechanisms, which will lead to identifying surface proteins as disease biomarkers and drug targets.
    AREAS COVERED: In this review, we summarize mass spectrometry (MS)-based proteomics methods for global analysis of cell-surface proteins. Then, investigations of the dynamics of surface proteins are discussed. Furthermore, we summarize the studies for the surfaceome interaction networks. Additionally, biological applications of MS-based surfaceome analysis are included, particularly highlighting the significance in biomarker identification, drug development, and immunotherapies.
    EXPERT OPINION: Modern MS-based proteomics provides an opportunity to systematically characterize proteins. However, due to the complexity of cell-surface proteins, the labor-intensive workflow, and the limit of clinical samples, comprehensive characterization of the surfaceome remains extraordinarily challenging, especially in clinical studies. Developing and optimizing surfaceome enrichment methods and utilizing automated sample preparation workflow can expand the applications of surfaceome analysis and deepen our understanding of the functions of cell-surface proteins.
    Keywords:  Biomarker discovery; Cell-surface proteins; Enrichment methods; MS-based proteomics; Protein dynamics; Protein glycosylation; Protein interactions
    DOI:  https://doi.org/10.1080/14789450.2024.2314148
  15. Anal Chem. 2024 Jan 29.
      Histone citrullination is an essential epigenetic post-translational modification (PTM) that affects many important physiological and pathological processes, but effective tools to study histone citrullination are greatly limited due to several challenges, including the small mass shift caused by this PTM and its low abundance in biological systems. Although previous studies have reported frequent occurrences of histone citrullination, these methods failed to provide a high-throughput and site-specific strategy to detect histone citrullination. Recently, we developed a biotin thiol tag that enabled precise identification of protein citrullination coupled with mass spectrometry. However, very few histone citrullination sites were identified, likely due to the highly basic nature of these proteins. In this study, we develop a novel method utilizing limited digestion and biotin derivative tag enrichment to facilitate direct in vivo identification of citrullination sites on histones. We achieve improved coverage of histone identification via partial enzymatic digestion and lysine block by dimethylation. With biotin tag-assisted chemical derivatization and enrichment, we also achieve precise annotation of histone citrullination sites with high confidence. We further compare different fragmentation methods and find that the electron-transfer-dissociation-based approach enables the most in-depth analysis and characterization. In total, we unambiguously identify 18 unique citrullination sites on histones in human astrocytoma U87 cells, including 15 citrullinated sites being detected for the first time. Some of these citrullination sites are observed to exhibit noticeable alterations in response to DNA damage, which demonstrates the superiority of our strategy in understanding the roles of histone citrullination in critical biological processes.
    DOI:  https://doi.org/10.1021/acs.analchem.3c02646
  16. Genes Dis. 2024 May;11(3): 100979
      Metabolomics as a research field and a set of techniques is to study the entire small molecules in biological samples. Metabolomics is emerging as a powerful tool generally for precision medicine. Particularly, integration of microbiome and metabolome has revealed the mechanism and functionality of microbiome in human health and disease. However, metabolomics data are very complicated. Preprocessing/pretreating and normalizing procedures on metabolomics data are usually required before statistical analysis. In this review article, we comprehensively review various methods that are used to preprocess and pretreat metabolomics data, including MS-based data and NMR -based data preprocessing, dealing with zero and/or missing values and detecting outliers, data normalization, data centering and scaling, data transformation. We discuss the advantages and limitations of each method. The choice for a suitable preprocessing method is determined by the biological hypothesis, the characteristics of the data set, and the selected statistical data analysis method. We then provide the perspective of their applications in the microbiome and metabolome research.
    Keywords:  Data centering and scaling; Data normalization; Data transformation; MS-Based data preprocessing; Missing values; NMR Data preprocessing; Outliers; Preprocessing/pretreatment
    DOI:  https://doi.org/10.1016/j.gendis.2023.04.018
  17. J Clin Invest. 2024 Jan 30. pii: e173782. [Epub ahead of print]
      In response to a meal, insulin drives hepatic glycogen synthesis to help regulate systemic glucose homeostasis. The mechanistic target of rapamycin complex 1 (mTORC1) is a well-established insulin target and contributes to the postprandial control of liver lipid metabolism, autophagy, and protein synthesis. However, its role in hepatic glucose metabolism is less understood. Here, we used metabolomics, isotope tracing, and mouse genetics to define a role for liver mTORC1 signaling in the control of postprandial glycolytic intermediates and glycogen deposition. We show that mTORC1 is required for glycogen synthase activity and glycogenesis. Mechanistically, hepatic mTORC1 activity promotes the feeding-dependent induction of Ppp1r3b, a gene encoding a phosphatase important for glycogen synthase activity whose polymorphisms are linked to human diabetes. Re-expression of Ppp1r3b in livers lacking mTORC1 signaling enhances glycogen synthase activity and restores postprandial glycogen content. mTORC1-dependent transcriptional control of Ppp1r3b is facilitated by FOXO1, a well characterized transcriptional regulator involved in the hepatic response to nutrient intake. Collectively, we identify a role for mTORC1 signaling in the transcriptional regulation of Ppp1r3b and the subsequent induction of postprandial hepatic glycogen synthesis.
    Keywords:  Endocrinology; Glucose metabolism; Insulin signaling; Metabolism
    DOI:  https://doi.org/10.1172/JCI173782
  18. FEBS Lett. 2024 Jan 28.
      Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity.
    Keywords:  autophagy; fatty acid; lipid droplet; lipolysis; lipophagy; lipotoxicity
    DOI:  https://doi.org/10.1002/1873-3468.14808
  19. J Bone Oncol. 2024 Feb;44 100524
      Epigenetic alterations, including DNA methylation and post translational modifications to histones, drive tumorigenesis and metastatic progression. In the context of bone metastasis, epigenetic modifications in tumor cells can modulate dissemination of cancer cells to the bone, tumor progression in the bone marrow, and may be associated with patient survival rates. Bone disseminated tumor cells may enter a dormant state or stimulate osteolysis through the "vicious cycle" of bone metastasis where bone disseminated tumor cells disrupt the bone microenvironment, which fuels tumor progression. Epigenetic alterations may either exacerbate or abrogate the vicious cycle by regulating tumor suppressors and oncogenes, which alter proliferation of bone-metastatic cancer cells. This review focuses on the specific epigenetic alterations that regulate bone metastasis, including DNA methylation, histone methylation, and histone acetylation. Here, we summarize key findings from researchers identifying epigenetic changes that drive tumor progression in the bone, along with pre-clinical and clinical studies investigating the utility of targeting aberrant epigenetic alterations to treat bone metastatic cancer.
    Keywords:  Acetylation; Bone metastasis; Epigenetics; HDAC; Histone; Histone Deacetylase; Methylation
    DOI:  https://doi.org/10.1016/j.jbo.2024.100524
  20. Anal Chem. 2024 Jan 31.
      Fast liquid chromatography (LC) amino acid enantiomer separation of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives using a chiral core-shell particle tandem column with weak anion exchange and zwitterionic-type quinine carbamate selectors in less than 3 min was achieved. Enantiomers of all AQC-derivatized proteinogenic amino acids and some isomeric ones (24 in total plus achiral glycine) were baseline separated (Rs > 1.5 except for glutamic acid with Rs = 1.3), while peaks of distinct amino acids and structural isomers (constitutional isomers and diastereomers of leucine and threonine) of the same configuration overlapped to various degrees. For this reason, drift tube ion mobility-mass spectrometry was added (i.e., LC-IM-MS) as an additional selectivity filter without extending run time. The IM separation dimension in combination with high-resolution demultiplexing enabled confirmation of threonine isomers (threonine, allo-threonine, homoserine), while leucine, isoleucine, and allo-isoleucine have almost identical collisional cross-section (DTCCSN2) values and added no selectivity to the partial LC separation. Density functional theory (DFT) calculations show that IM separation of threonine isomers was possible due to conformational stabilization by hydrogen bond formation between the hydroxyl side chain and the urea group. Generally, the CCSN2 of protonated ions increased uniformly with addition of the AQC label, while outliers could be explained by consideration of intramolecular interactions and additional structural analysis. Preliminary validation of the enantioselective LC-IM-MS method for quantitative analysis showed compliance of accuracy and precision with common limits in bioanalytical methods, and applicability to a natural lipopeptide and a therapeutic synthetic peptide could be demonstrated.
    DOI:  https://doi.org/10.1021/acs.analchem.3c05426
  21. Sci Adv. 2024 Feb 02. 10(5): eadj9479
      Folate, an essential vitamin, is a one-carbon acceptor and donor in key metabolic reactions. Erythroid cells harbor a unique sensitivity to folate deprivation, as revealed by the primary pathological manifestation of nutritional folate deprivation: megaloblastic anemia. To study this metabolic sensitivity, we applied mild folate depletion to human and mouse erythroid cell lines and primary murine erythroid progenitors. We show that folate depletion induces early blockade of purine synthesis and accumulation of the purine synthesis intermediate and signaling molecule, 5'-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR), followed by enhanced heme metabolism, hemoglobin synthesis, and erythroid differentiation. This is phenocopied by inhibition of folate metabolism using the inhibitor SHIN1, and by AICAR supplementation. Mechanistically, the metabolically driven differentiation is independent of mechanistic target of rapamycin complex 1 (mTORC1) and adenosine 5'-monophosphate-activated protein kinase (AMPK) and is instead mediated by protein kinase C. Our findings suggest that folate deprivation-induced premature differentiation of erythroid progenitor cells is a molecular etiology to folate deficiency-induced anemia.
    DOI:  https://doi.org/10.1126/sciadv.adj9479
  22. FASEB J. 2024 Feb 15. 38(3): e23450
      Oncolytic virus immunotherapy as a new tumor therapy has made remarkable achievements in clinical practice. And metabolic reprogramming mediated by oncolytic virus has a significant impact on the immune microenvironment. This review summarized the reprogramming of host cell glucose metabolism, lipid metabolism, oxidative phosphorylation, and glutamine metabolism by oncolytic virus and illustrated the effects of metabolic reprogramming on the immune microenvironment. It was found that oncolytic virus-induced reprogramming of glucose metabolism in tumor cells has both beneficial and detrimental effects on the immune microenvironment. In addition, oncolytic virus can promote fatty acid synthesis in tumor cells, inhibit oxidative phosphorylation, and promote glutamine catabolism, which facilitates the anti-tumor immune function of immune cells. Therefore, targeted metabolic reprogramming is a new direction to improve the efficacy of oncolytic virus immunotherapy.
    Keywords:  glucose metabolism; glutamine metabolism; immune microenvironment; lipid metabolism; metabolic reprogramming; oncolytic virus; oxidative phosphorylation
    DOI:  https://doi.org/10.1096/fj.202301947RR