Anal Chim Acta. 2024 Jan 25. pii: S0003-2670(23)01338-7. [Epub ahead of print]1287 342117
BACKGROUND: Carbonyl-containing metabolites are a class of key intermediate in metabolism, which has potentials to be biomarkers. Since their poor ionization, derivatization reagents, such as dansylhydrazine, are usually used to improve the sensitivity and/or to facilitate quantification. However, most current carbonyl derivatization reagents only have two channels, one is isotopically labeled and the other one is non-labeled. To quantify more samples in a run and using data-independent acquisition (DIA) mode to get comprehensive and unbiased mass fragmentation, we proposed a fragment-controlled isotopic tag, called DiMe-FP-NHNH2 (FP) which has five channels: Δ0, Δ3, Δ6, Δ9, and Δ12, thus up to 5 samples can be analyzed in a run.RESULTS: The most important improvement is that the FP tag can produce multiple characteristic signals in tandem mass, diagnostic ions and neutral losses, which helps to selectively detect aldehydes/ketones for targeted and untargeted analysis. To exhibit all capabilities of the FP tag, we mimicked an untargeted metabolomics experiment, which comprises two steps. First, discovery step, using Data-Independent Analysis (SWATH-MS) and the labeling of two channels (Δ0 and Δ3), we picked out aldehyde/ketone from the pooled urine samples based on three characteristic signals, including isotope patterns, diagnostic ions, and neutral losses. Second, five-plex quantification, relative and absolute quantification were achieved in a single LC-MS analysis. Notably, because of different nominal masses, the FP tag can be used on any low or high resolution mass spectrometers.
SIGNIFICANCE: The benefits and performance of the FP tag are demonstrated by the analysis of urine samples collected from patients from a prostate cancer study, in which more than a thousand features were found based on MS1 fingerprint, but only around 120 aldehyde/ketone candidates were confirmed with characteristic signals and nine of which were quantified showing significant differences from healthy and reference urine samples.
Keywords: Carbonyl sub-metabolome; Derivatization; LC-MS; Metabolomics; Multiplexing; QUAL/QUANT