bims-mascan Biomed News
on Mass spectrometry in cancer research
Issue of 2023‒02‒12
twenty-two papers selected by
Giovanny Rodriguez Blanco
University of Edinburgh


  1. Int J Mol Sci. 2023 Jan 19. pii: 1987. [Epub ahead of print]24(3):
      Liquid chromatography-mass spectrometry (LC-MS) is the method of choice for the untargeted profiling of biological samples. A multiplatform LC-MS-based approach is needed to screen polar metabolites and lipids comprehensively. Different mobile phase modifiers were tested to improve the electrospray ionization process during metabolomic and lipidomic profiling. For polar metabolites, hydrophilic interaction LC using a mobile phase with 10 mM ammonium formate/0.125% formic acid provided the best performance for amino acids, biogenic amines, sugars, nucleotides, acylcarnitines, and sugar phosphate, while reversed-phase LC (RPLC) with 0.1% formic acid outperformed for organic acids. For lipids, RPLC using a mobile phase with 10 mM ammonium formate or 10 mM ammonium formate with 0.1% formic acid permitted the high signal intensity of various lipid classes ionized in ESI(+) and robust retention times. For ESI(-), the mobile phase with 10 mM ammonium acetate with 0.1% acetic acid represented a reasonable compromise regarding the signal intensity of the detected lipids and the stability of retention times compared to 10 mM ammonium acetate alone or 0.02% acetic acid. Collectively, we show that untargeted methods should be evaluated not only on the total number of features but also based on common metabolites detected by a specific platform along with the long-term stability of retention times.
    Keywords:  LC-MS; additives; lipidomics; liquid chromatography; mass spectrometry; metabolomics; mobile phase; modifiers; optimization
    DOI:  https://doi.org/10.3390/ijms24031987
  2. Anal Chem. 2023 Feb 07.
      In tandem mass spectrometry (MS2)-based multiplexed quantitative proteomics, the complement reporter ion approaches (TMTc and TMTproC) were developed to eliminate the ratio-compression problem of conventional MS2-level approaches. Resolving all high m/z complement reporter ions (∼6.32 mDa-spaced) requires mass resolution and scan speeds above the performance levels of OrbitrapTM instruments. Therefore, complement reporter ion quantification with TMT/TMTpro reagents is currently limited to 5 out of 11 (TMT) or 9 out of 18 (TMTpro) channels (∼1 Da spaced). We first demonstrate that a FusionTM LumosTM Orbitrap can resolve 6.32 mDa-spaced complement reporter ions with standard acquisition modes extended with 3 s transients. We then implemented a super-resolution mass spectrometry approach using the least-squares fitting (LSF) method for processing Orbitrap transients to achieve shotgun proteomics-compatible scan rates. The LSF performance resolves the 6.32 mDa doublets for all TMTproC channels in the standard mass range with transients as short as ∼108 ms (Orbitrap resolution setting of 50,000 at m/z 200). However, we observe a slight decrease in measurement precision compared to 1 Da spacing with the 108 ms transients. With 256 ms transients (resolution of 120,000 at m/z 200), coefficients of variation are essentially indistinguishable from 1 Da samples. We thus demonstrate the feasibility of highly multiplexed, accurate, and precise shotgun proteomics at the MS2 level.
    DOI:  https://doi.org/10.1021/acs.analchem.2c04742
  3. Nat Protoc. 2023 Feb 08.
      Analytical techniques with high sensitivity and selectivity are essential to the quantitative analysis of clinical samples. Liquid chromatography coupled to tandem mass spectrometry is the gold standard in clinical chemistry. However, tandem mass spectrometers come at high capital expenditure and maintenance costs. We recently showed that it is possible to generate very similar results using a much simpler single mass spectrometry detector by performing enhanced in-source fragmentation/annotation (EISA) combined with correlated ion monitoring. Here we provide a step-by-step protocol for optimizing the analytical conditions for EISA, so anyone properly trained in liquid chromatography-mass spectrometry can follow and apply this technique for any given analyte. We exemplify the approach by using 2-hydroxyglutarate (2-HG) which is a clinically relevant metabolite whose D-enantiomer is considered an 'oncometabolite', characteristic of cancers associated with mutated isocitrate dehydrogenases 1 or 2 (IDH1/2). We include procedures for determining quantitative robustness, and show results of these relating to the analysis of DL-2-hydroxyglutarate in cells, as well as in serum samples from patients with acute myeloid leukemia that contain the IDH1/2 mutation. This EISA-mass spectrometry protocol is a broadly applicable and low-cost approach for the quantification of small molecules that has been developed to work well for both single-quadrupole and time-of-flight mass analyzers.
    DOI:  https://doi.org/10.1038/s41596-023-00803-0
  4. J Lipid Res. 2023 Feb 03. pii: S0022-2275(23)00014-7. [Epub ahead of print] 100341
      Recent advances in single-cell genomics and transcriptomics technologies have transformed our understanding of cellular heterogeneity in growth, development, ageing and disease; however, methods for single-cell lipidomics have comparatively lagged behind in development. We have developed a method for the detection and quantification of a wide range of phosphatidylcholine (PC) and sphingomyelin (SM) species from single cells that combines fluorescence-assisted cell sorting (FACS) with automated chip-based nanoelectrospray ionization (nanoESI) and shotgun lipidomics. We show herein that our method is capable of quantifying more than 50 different PC and SM species from single cells and can easily distinguish between cells of different lineages or cells treated with exogenous fatty acids. Moreover, our method can detect more subtle differences in the lipidome between cell lines of the same cancer type. Our approach can be run in parallel with other single-cell technologies to deliver near-complete, high-throughput multi-omics data on cells with a similar phenotype and has the capacity to significantly advance our current knowledge on cellular heterogeneity.
    Keywords:  Glycerophospholipids; lipidomics; lipids; mass spectrometry; nanoelectrospray ionization; omega-3 fatty acids; prostate cancer; shotgun lipidomics; single-cell heterogeneity; sphingolipids
    DOI:  https://doi.org/10.1016/j.jlr.2023.100341
  5. Cell Biosci. 2023 Feb 08. 13(1): 25
      With high prevalence and mortality, together with metabolic reprogramming, colorectal cancer is a leading cause of cancer-related death. Metabolic reprogramming gives tumors the capacity for long-term cell proliferation, making it a distinguishing feature of cancer. Energy and intermediate metabolites produced by metabolic reprogramming fuel the rapid growth of cancer cells. Aberrant metabolic enzyme-mediated tumor metabolism is regulated at multiple levels. Notably, tumor metabolism is affected by nutrient levels, cell interactions, and transcriptional and posttranscriptional regulation. Understanding the crosstalk between metabolic enzymes and colorectal carcinogenesis factors is particularly important to advance research for targeted cancer therapy strategies via the investigation into the aberrant regulation of metabolic pathways. Hence, the abnormal roles and regulation of metabolic enzymes in recent years are reviewed in this paper, which provides an overview of targeted inhibitors for targeting metabolic enzymes in colorectal cancer that have been identified through tumor research or clinical trials.
    Keywords:  Colorectal cancer; Metabolic enzymes; Metabolic reprogramming; Signal transduction; Targeted therapy
    DOI:  https://doi.org/10.1186/s13578-023-00977-w
  6. Mol Pharmacol. 2023 Mar;103(3): 132-144
      To maintain their growth rate, cancer cells must secure a supply of fatty acids, which are necessary for building cell membranes and maintaining energy processes. This is one of the reasons why tissues with intensive fatty acid metabolism, such as the mammary gland, are more likely to develop tumors. One natural or induced defense process against cancer is ferroptosis, which interferes with normal fatty acid metabolism. This leads to the oxidation of polyunsaturated fatty acids, which causes a rearrangement of the metabolism and damages cell membranes. As a consequence of this oxidation, there is a shortage of normal polyunsaturated fatty acids, which disturbs the complicated metabolism of fatty acids. This imbalance in metabolism, resulting from the deficiency of properly structured fatty acids, is called, by these authors, "acyl starvation." When cancer cells are exposed to alternating hypoxia and reoxygenation, they often develop resistance to neoadjuvant therapies. Blocking the stearoyl-CoA desaturase - fatty acid-binding protein 4 - fatty acid translocase axis appears to be a promising pathway in the treatment of breast cancer. On the one hand, the inhibition of desaturase leads to the formation of toxic phospholipid hydroperoxides in ferroptosis, whereas on the other hand, the inhibition of fatty acid-binding protein 4 and translocase leads to a reduced uptake of fatty acids and disruption of the cellular transport of fatty acids, resulting in intracellular acyl starvation. The disruption in the metabolism of fatty acids in cancer cells may augment the effectiveness of neoadjuvant therapy. SIGNIFICANCE STATEMENT: Regulation of the metabolism of fatty acids in cancer cells seems to be a promising therapeutic direction. Studies show that the induction of ferroptosis in cancer cells, combined with use of neoadjuvant therapies, effectively inhibits the proliferation of these cells. We link the process of ferroptosis with apoptosis and SCD1-FABP4-CD36 axis and propose the term "acyl starvation" for the processes leading to FA deficiency, dysregulation of FA metabolism in cancer cells, and, most importantly, the appearance of incorrect proportions FAs.
    DOI:  https://doi.org/10.1124/molpharm.122.000607
  7. J Proteome Res. 2023 Feb 10.
      Targeted quantification of proteins is a standard methodology with broad utility, but targeted quantification of glycoproteins has not reached its full potential. The lack of optimized workflows and isotopically labeled standards limits the acceptance of glycoproteomics quantification. In this work, we introduce an efficient and streamlined chemoenzymatic synthesis of a library of isotopically labeled glycopeptides of IgG1 which we use for quantification in an energy optimized LC-MS/MS-PRM workflow. Incorporation of the stable isotope labeled N-acetylglucosamine enables an efficient monitoring of all major fragment ions of the glycopeptides generated under the soft higher-energy C-trap dissociation (HCD) conditions, which reduces the coefficients of variability (CVs) of the quantification to 0.7-2.8%. Our results document, for the first time, that the workflow using a combination of stable isotope labeled standards with intrascan normalization enables quantification of the glycopeptides by an electron transfer dissociation (ETD) workflow, as well as the HCD workflow, with the highest sensitivity compared to traditional workflows. This was exemplified by a rapid quantification (13 min) of IgG1 Fc glycoforms from COVID-19 patients.
    Keywords:  Glycopeptide Synthesis; Glycoproteomics; Immunoglobulins; Mass Spectrometry; PRM Analysis
    DOI:  https://doi.org/10.1021/acs.jproteome.2c00475
  8. Cancer Discov. 2023 Feb 06. 13(2): 266-268
      SUMMARY: In this issue of Cancer Discovery, Thomas and colleagues leverage mass spectrometry metabolomics, stable isotope labeling, and functional studies to explore metabolic vulnerabilities in cancers harboring mutations in isocitrate dehydrogenase (IDH). The authors present compelling data to support the claim that dysregulated lipid synthesis underpins a synthetic lethal target in cancers with IDH1, but not IDH2, mutations. See related article by Thomas et al., p. 496 (9).
    DOI:  https://doi.org/10.1158/2159-8290.CD-22-1325
  9. J Proteome Res. 2023 Feb 10.
      Proteomics and metabolomics are essential in systems biology, and simultaneous proteo-metabolome liquid-liquid extraction (SPM-LLE) allows isolation of the metabolome and proteome from the same sample. Since the proteome is present as a pellet in SPM-LLE, it must be solubilized for quantitative proteomics. Solubilization and proteome extraction are critical factors in the information obtained at the proteome level. In this study, we investigated the performance of two surfactants (sodium deoxycholate (SDC), sodium dodecyl sulfate (SDS)) and urea in terms of proteome coverage and extraction efficiency of an interphase proteome pellet generated by methanol-chloroform based SPM-LLE. We also investigated how the performance differs when the proteome is extracted from the interphase pellet or by direct cell lysis. We quantified 12 lipids covering triglycerides and various phospholipid classes, and 25 polar metabolites covering central energy metabolism in chloroform and methanol extracts. Our study reveals that the proteome coverages between the two surfactants and urea for the SPM-LLE interphase pellet were similar, but the extraction efficiencies differed significantly. While SDS led to enrichment of basic proteins, which were mainly ribosomal and ribonuclear proteins, urea was the most efficient extraction agent for simultaneous proteo-metabolome analysis. The results of our study also show that the performance of surfactants for quantitative proteomics is better when the proteome is extracted through direct cell lysis rather than an interphase pellet. In contrast, the performance of urea for quantitative proteomics was significantly better when the proteome was extracted from an interphase pellet than by direct cell lysis. We demonstrated that urea is superior to surfactants for proteome extraction from SPM-LLE interphase pellets, with a particularly good performance for the extraction of proteins associated with metabolic pathways. Data are available via ProteomeXchange with identifier PXD027338.
    Keywords:  SP3; bottom-up proteomics; in-solution digest; label free quantification; mass spectrometry; metabolomics; proteomics; sample preparation; simultaneous proteo-metabolomics
    DOI:  https://doi.org/10.1021/acs.jproteome.2c00758
  10. Int J Mol Sci. 2023 Jan 25. pii: 2337. [Epub ahead of print]24(3):
      In this review we focus on the role of glutamine in control of cancer stem cell (CSC) fate. We first provide an overview of glutamine metabolism, and then summarize relevant studies investigating how glutamine metabolism modulates the CSC compartment, concentrating on solid tumors. We schematically describe how glutamine in CSC contributes to several metabolic pathways, such as redox metabolic pathways, ATP production, non-essential aminoacids and nucleotides biosynthesis, and ammonia production. Furthermore, we show that glutamine metabolism is a key regulator of epigenetic modifications in CSC. Finally, we briefly discuss how cancer-associated fibroblasts, adipocytes, and senescent cells in the tumor microenvironment may indirectly influence CSC fate by modulating glutamine availability. We aim to highlight the complexity of glutamine's role in CSC, which supports our knowledge about metabolic heterogeneity within the CSC population.
    Keywords:  adipocytes; cancer stem cells; cancer-associated fibroblasts; glutamine; metabolism; senescent cells; tumor microenvironment
    DOI:  https://doi.org/10.3390/ijms24032337
  11. J Proteome Res. 2023 Feb 06.
      In recent years machine learning has made extensive progress in modeling many aspects of mass spectrometry data. We brought together proteomics data generators, repository managers, and machine learning experts in a workshop with the goals to evaluate and explore machine learning applications for realistic modeling of data from multidimensional mass spectrometry-based proteomics analysis of any sample or organism. Following this sample-to-data roadmap helped identify knowledge gaps and define needs. Being able to generate bespoke and realistic synthetic data has legitimate and important uses in system suitability, method development, and algorithm benchmarking, while also posing critical ethical questions. The interdisciplinary nature of the workshop informed discussions of what is currently possible and future opportunities and challenges. In the following perspective we summarize these discussions in the hope of conveying our excitement about the potential of machine learning in proteomics and to inspire future research.
    Keywords:  artificial intelligence; deep learning; enzymatic digestion; ion mobility; liquid chromatography; machine learning; research integrity; synthetic data; tandem mass spectrometry
    DOI:  https://doi.org/10.1021/acs.jproteome.2c00711
  12. J Proteomics. 2023 Feb 07. pii: S1874-3919(23)00028-3. [Epub ahead of print] 104839
      Fractionation is essential to achieving deep proteome coverage for sample multiplexing experiments where currently up to 18 samples can be analyzed concurrently. However, peptide fractionation (i.e., upstream of LC-MS/MS analysis) with a liquid chromatography system constrains sample processing as only a single sample can be fractionated at once. Here, we highlight the use of spin column-based methods which permit multiple multiplexed samples to be fractionated simultaneously. These methods require only a centrifuge and eliminate the need for a dedicated liquid chromatograph. We investigate peptide fractionation with strong anion exchange (SAX) and high-pH reversed phase (HPRP) spin columns, as well as a combination of both. In two separate experiments, we acquired deep proteome coverage (>8000 quantified proteins), while starting with <25 μg of protein per channel. Our datasets showcase the proteome alterations in two human cell lines resulting from treatment with inhibitors acting on the ubiquitin-proteasome system. We recommend this spin column-based peptide fractionation strategy for high-throughput screening applications or whenever a liquid chromatograph is not readily available. SIGNIFICANCE: Fractionation is a means to achieve deep proteome coverage for global proteomics analysis. Typical liquid chromatography systems may be a prohibitive expense for many laboratories. Here, we investigate prefractionation with strong anion exchange (SAX) and high-pH reversed phase (HPRP) spin columns, as well as a combination of both, as prefractionation methods to increase proteome depth. These spin columns have advantages over liquid chromatography systems, which include relative affordability, higher throughput capability, no carry over, and fewer potential instrument-related malfunctions. In two separate experiments, we acquired deep proteome coverage (>8000 quantified proteins), thereby showing the utility of each or a combination of both spin columns for global proteome analysis.
    Keywords:  FAIMS; HPRP; Isobaric tagging; SAX; TMTpro
    DOI:  https://doi.org/10.1016/j.jprot.2023.104839
  13. Metab Eng. 2023 Feb 07. pii: S1096-7176(23)00022-8. [Epub ahead of print]
      Hypoxia has been identified as a major factor in the pathogenesis of adipose tissue inflammation, which is a hallmark of obesity and obesity-linked type 2 diabetes mellitus. In this study, we have investigated the impact of hypoxia (1% oxygen) on the physiology and metabolism of 3T3-L1 adipocytes, a widely used cell culture model of adipose. Specifically, we applied parallel labeling experiments, isotopomer spectral analysis, and 13C-metabolic flux analysis to quantify the impact of hypoxia on adipogenesis, de novo lipogenesis and metabolic flux reprogramming in adipocytes. We found that 3T3-L1 cells can successfully differentiate into lipid-accumulating adipocytes under hypoxia, although the production of lipids was reduced by about 40%. Quantitative flux analysis demonstrated that short-term (1 day) and long-term (7 days) exposure to hypoxia resulted in similar reprogramming of cellular metabolism. Overall, we found that hypoxia: 1) reduced redox and energy generation by more than 2-fold and altered the patterns of metabolic pathway contributions to production and consumption of energy and redox cofactors; 2) redirected glucose metabolism from pentose phosphate pathway and citric acid cycle to lactate production; 3) rewired glutamine metabolism, from net glutamine production to net glutamine catabolism; 4) suppressed branched chain amino acid consumption; and 5) reduced biosynthesis of odd-chain fatty acids and mono-unsaturated fatty acids, while synthesis of saturated even-chain fatty acids was not affected. Together, these results highlight the profound impact of extracellular microenvironment on adipocyte metabolic activity and function.
    Keywords:  3T3-L1 cells; Adipocytes; Differentiation; Hypoxia; Metabolism; de novo lipogenesis
    DOI:  https://doi.org/10.1016/j.ymben.2023.02.002
  14. Nutr Metab Insights. 2023 ;16 11786388221148858
      Dietary malpractice is a risk factor for obesity. This study tested the hypothesis that consumption of a high-fat diet alters mammary metabolome in pubertal mice. We performed untargeted metabolomic analysis of primary metabolism on mammary glands from pubertal mice fed the AIN93G standard diet or a high-fat diet (HFD) for 3 weeks. We identified 97 metabolites for statistical comparisons. The HFD altered the amino acid metabolism considerably. This included elevated expression of branched-chain amino acids, non-essential amino acids (aspartic acid and glutamic acid), and methionine sulfoxide (oxidized methionine) and an alteration in the aminoacyl-tRNA biosynthesis pathway. Furthermore, elevations of fumaric acid and malic acid (both are citrate cycle intermediates) and glyceric acid (its phosphate derivatives are intermediates of glycolysis) in HFD-fed mice suggest an acceleration of both citrate cycle and glycolysis. Lower expression of glycerol, oleic acid, and palmitoleic acid, as well as decreased mammary expression of genes encoding lipid metabolism (Acaca, Fads1, Fasn, Scd1, and Srebf1) in HFD-fed mice indicate an attenuated lipid metabolism in the presence of adequate dietary fat. In conclusion, consumption of the HFD for 3 weeks alters metabolic profile of pubertal mammary glands. This alteration may affect mammary development and growth in pubertal mice.
    Keywords:  Metabolome; diet; mammary glands; mice; puberty
    DOI:  https://doi.org/10.1177/11786388221148858
  15. Metabolomics. 2023 Feb 06. 19(2): 11
      BACKGROUND: Liquid chromatography-high resolution mass spectrometry (LC-HRMS) is a popular approach for metabolomics data acquisition and requires many data processing software tools. The FAIR Principles - Findability, Accessibility, Interoperability, and Reusability - were proposed to promote open science and reusable data management, and to maximize the benefit obtained from contemporary and formal scholarly digital publishing. More recently, the FAIR principles were extended to include Research Software (FAIR4RS).AIM OF REVIEW: This study facilitates open science in metabolomics by providing an implementation solution for adopting FAIR4RS in the LC-HRMS metabolomics data processing software. We believe our evaluation guidelines and results can help improve the FAIRness of research software.
    KEY SCIENTIFIC CONCEPTS OF REVIEW: We evaluated 124 LC-HRMS metabolomics data processing software obtained from a systematic review and selected 61 software for detailed evaluation using FAIR4RS-related criteria, which were extracted from the literature along with internal discussions. We assigned each criterion one or more FAIR4RS categories through discussion. The minimum, median, and maximum percentages of criteria fulfillment of software were 21.6%, 47.7%, and 71.8%. Statistical analysis revealed no significant improvement in FAIRness over time. We identified four criteria covering multiple FAIR4RS categories but had a low %fulfillment: (1) No software had semantic annotation of key information; (2) only 6.3% of evaluated software were registered to Zenodo and received DOIs; (3) only 14.5% of selected software had official software containerization or virtual machine; (4) only 16.7% of evaluated software had a fully documented functions in code. According to the results, we discussed improvement strategies and future directions.
    Keywords:  FAIR principles; Liquid chromatography-mass spectrometry; Metabolomics; Open science; Reproducibility; Research software
    DOI:  https://doi.org/10.1007/s11306-023-01974-3
  16. Int J Mol Sci. 2023 Jan 20. pii: 2086. [Epub ahead of print]24(3):
      Reactive oxygen species (ROS) represent a group of high reactive molecules with dualistic natures since they can induce cytotoxicity or regulate cellular physiology. Among the ROS, the superoxide anion radical (O2·-) is a key redox signaling molecule prominently generated by the NADPH oxidase (NOX) enzyme family and by the mitochondrial electron transport chain. Notably, altered redox balance and deregulated redox signaling are recognized hallmarks of cancer and are involved in malignant progression and resistance to drugs treatment. Since oxidative stress and metabolism of cancer cells are strictly intertwined, in this review, we focus on the emerging roles of NOX enzymes as important modulators of metabolic reprogramming in cancer. The NOX family includes seven isoforms with different activation mechanisms, widely expressed in several tissues. In particular, we dissect the contribute of NOX1, NOX2, and NOX4 enzymes in the modulation of cellular metabolism and highlight their potential role as a new therapeutic target for tumor metabolism rewiring.
    Keywords:  NADPH oxidase; NOX; ROS; cell metabolism; glycolytic enzymes; metabolic reprogramming; reactive oxygen species; redox metabolism
    DOI:  https://doi.org/10.3390/ijms24032086
  17. Clin Chim Acta. 2023 Feb 08. pii: S0009-8981(23)00052-9. [Epub ahead of print] 117250
      BACKGROUND: Mucopolysaccharidoses (MPSs) are inherited genetic diseases caused by an absence or deficiency of lysosomal enzymes responsible for catabolizing glycosaminoglycans (GAGs). Undiagnosed patients, or those without adequate treatment in early life, can be severely and irreversibly affected by the disease. In this study, we applied liquid chromatography-high resolution mass spectrometry (LC-HRMS)-based untargeted metabolomics to identify potential biomarkers for MPS disorders to better understand how MPS may affect the metabolome of patients.METHODS: Urine samples from 37 MPS patients (types I, II, III, IV, and VI; untreated and treated with enzyme replacement therapy (ERT)) and 38 controls were analyzed by LC-HRMS. Data were processed by an untargeted metabolomics workflow and submitted to multivariate statistical analyses to reveal significant differences between the MPS and control groups.
    RESULTS: A total of 12 upregulated metabolites common to all MPS types were identified. Dipeptides, amino acids and derivatives were upregulated in the MPS group compared to controls. N-acetylgalactosamines 4- or 6-sulfate, important constituents of GAGs, were also elevated in MPS patients, most prominently in those with MPS VI. Notably, treated patients exhibited lower levels of the aforementioned acylaminosugars than untreated patients in all MPS types.
    CONCLUSIONS: Untargeted metabolomics has enabled the detection of metabolites that could improve our understanding of MPS physiopathology. These potential biomarkers can be utilized in screening methods to support diagnosis and ERT monitoring.
    Keywords:  Biomarkers; Glycosaminoglycans; LC-HRMS; Mucopolysaccharidosis; Untargeted metabolomics
    DOI:  https://doi.org/10.1016/j.cca.2023.117250
  18. Expert Rev Proteomics. 2023 Feb 06. 1-4
      
    Keywords:  Metabolomics; Tumor; mass spectrometry imaging; spatially resolved metabolomics; tumor heterogeneity
    DOI:  https://doi.org/10.1080/14789450.2023.2176754
  19. ACS Omega. 2023 Jan 31. 8(4): 4410-4418
      N-linked glycosylation is an important post-translational modification that is difficult to identify and quantify in traditional bottom-up proteomics experiments. Enzymatic deglycosylation of proteins by peptide:N-glycosidase F (PNGase F) prior to digestion and subsequent mass spectrometry analysis has been shown to improve coverage of various N-linked glycopeptides, but the inclusion of this step may add up to a day to an already lengthy sample preparation process. An efficient way to integrate deglycosylation with bottom-up proteomics would be a valuable contribution to the glycoproteomics field. Here, we demonstrate a proteomics workflow in which deglycosylation and proteolytic digestion of samples occur simultaneously using suspension trapping (S-Trap). This approach adds no time to standard digestion protocols. Applying this sample preparation strategy to a human serum sample, we demonstrate improved identification of potential N-glycosylated peptides in deglycosylated samples compared with non-deglycosylated samples, identifying 156 unique peptides that contain the N-glycosylation motif (asparagine-X-serine/threonine), the deamidation modification characteristic of PNGase F, and an increase in peptide intensity over a control sample. We expect that this rapid sample preparation strategy will assist in the identification and quantification of both known and potential glycoproteins. Data are available via ProteomeXchange with the identifier PXD037921.
    DOI:  https://doi.org/10.1021/acsomega.2c08071
  20. Cells. 2023 Jan 28. pii: 428. [Epub ahead of print]12(3):
      Lipid metabolic disturbances are associated with several diseases, such as type 2 diabetes or malignancy. In the last two decades, high-performance mass spectrometry-based lipidomics has emerged as a valuable tool in various fields of biology. However, the evaluation of macroscopic tissue homogenates leaves often undiscovered the differences arising from micron-scale heterogeneity. Therefore, in this work, we developed a novel laser microdissection-coupled shotgun lipidomic platform, which combines quantitative and broad-range lipidome analysis with reasonable spatial resolution. The multistep approach involves the preparation of successive cryosections from tissue samples, cross-referencing of native and stained images, laser microdissection of regions of interest, in situ lipid extraction, and quantitative shotgun lipidomics. We used mouse liver and kidney as well as a 2D cell culture model to validate the novel workflow in terms of extraction efficiency, reproducibility, and linearity of quantification. We established that the limit of dissectible sample area corresponds to about ten cells while maintaining good lipidome coverage. We demonstrate the performance of the method in recognizing tissue heterogeneity on the example of a mouse hippocampus. By providing topological mapping of lipid metabolism, the novel platform might help to uncover region-specific lipidomic alterations in complex samples, including tumors.
    Keywords:  cryosection; in situ lipid extraction; laser microdissection; mass spectrometry; quantitative shotgun lipidomics; spatial resolution; tissue heterogeneity
    DOI:  https://doi.org/10.3390/cells12030428
  21. Technol Cancer Res Treat. 2023 Jan-Dec;22:22 15330338221148811
      Glycosylation has a clear role in cancer initiation and progression, with numerous studies identifying distinct glycan features or specific glycoproteoforms associated with cancer. Common findings include that aggressive cancers tend to have higher expression levels of enzymes that regulate glycosylation as well as glycoproteins with greater levels of complexity, increased branching, and enhanced chain length1. Research in cancer glycoproteomics over the last 50-plus years has mainly focused on technology development used to observe global changes in glycosylation. Efforts have also been made to connect glycans to their protein carriers as well as to delineate the role of these modifications in intracellular signaling and subsequent cell function. This review discusses currently available techniques utilizing mass spectrometry-based technologies used to study glycosylation and highlights areas for future advancement.
    Keywords:  biomarker; cancer; glycan; glycosylation; mass spectrometry; post-translational modification
    DOI:  https://doi.org/10.1177/15330338221148811
  22. J Proteome Res. 2023 Feb 07.
      The global proteome analysis was limited by the identification of peptides with low abundance or specific physiochemical properties. Here, a one-dimensional online alkaline-pH reverse phase nanoelectrospray-tandem mass spectrometry (alkaline-pH-MS/MS) method was developed and optimized for global proteomic analysis. In this method, peptides were separated on a nanoflow C18 column with an alkaline-pH mobile phase (pH = 8.0) and directly injected into the mass spectrometer. The unique peptides overlapped between alkaline-pH-MS/MS and conventional online low-pH reverse phase nanoelectrospray-tandem mass spectrometry (low-pH-MS/MS) were as low as 45%, strongly indicating that these two methods were complementary to each other. In addition, alkaline-pH-MS/MS showed identification capacity for a higher proportion of peptides with negative grand average of hydropathy (GRAVY) or high isoelectric point (pI). Compared to low-pH-MS/MS, alkaline-pH-MS/MS enabled enrichment preference toward histidine-, lysine-, methionine-, and proline-containing peptides. The complementarity of alkaline-pH-MS/MS and low-pH-MS/MS was further demonstrated for the analysis of tryptic digests from 15 intrahepatic cholangiocarcinoma (iCCA) cell lines. The alternating 60 min alkaline-pH-MS/MS plus 60 min low-pH-MS/MS method outperformed the conventional 120 min low-pH-MS/MS method in both the identification of amino acid variants and protein groups. Therefore, we established the alkaline-pH-MS/MS method as a simple, competitive, alternative method to low-pH-MS/MS for global proteomic analysis.
    Keywords:  amino acid variant; mass spectrometry; online alkaline-pH reverse phase; proteomics
    DOI:  https://doi.org/10.1021/acs.jproteome.2c00765