bims-mascan Biomed News
on Mass spectrometry in cancer research
Issue of 2021‒06‒13
thirty papers selected by
Giovanny Rodriguez Blanco
University of Edinburgh

  1. Nat Cell Biol. 2021 Jun;23(6): 631-641
      Exosomes are extracellular vesicles derived from the endosomal compartment that are potentially involved in intercellular communication. Here, we found that frequently used biomarkers of exosomes are heterogeneous, and do not exhibit universal utility across different cell types. To uncover ubiquitous and abundant proteins, we used an unbiased and quantitative proteomic approach based on super-stable isotope labeling with amino acids in cell culture (super-SILAC), coupled to high-resolution mass spectrometry. In total, 1,212 proteins were quantified in the proteome of exosomes, irrespective of the cellular source or isolation method. A cohort of 22 proteins was universally enriched. Fifteen proteins were consistently depleted in the proteome of exosomes compared to cells. Among the enriched proteins, we identified biogenesis-related proteins, GTPases and membrane proteins, such as CD47 and ITGB1. The cohort of depleted proteins in exosomes was predominantly composed of nuclear proteins. We identified syntenin-1 as a consistently abundant protein in exosomes from different cellular origins. Syntenin-1 is also present in exosomes across different species and biofluids, highlighting its potential use as a putative universal biomarker of exosomes. Our study provides a comprehensive quantitative atlas of core proteins ubiquitous to exosomes that can serve as a resource for the scientific community.
  2. Annu Rev Cancer Biol. 2021 Mar;5(1): 235-257
      Metabolic and epigenetic reprogramming are characteristics of cancer cells that, in many cases, are linked. Oncogenic signaling, diet, and tumor microenvironment each influence the availability of metabolites that are substrates or inhibitors of epigenetic enzymes. Reciprocally, altered expression or activity of chromatin-modifying enzymes can exert direct and indirect effects on cellular metabolism. In this article, we discuss the bidirectional relationship between epigenetics and metabolism in cancer. First, we focus on epigenetic control of metabolism, highlighting evidence that alterations in histone modifications, chromatin remodeling, or the enhancer landscape can drive metabolic features that support growth and proliferation. We then discuss metabolic regulation of chromatin-modifying enzymes and roles in tumor growth and progression. Throughout, we highlight proposed therapeutic and dietary interventions that leverage metabolic-epigenetic cross talk and have the potential to improve cancer therapy.
    Keywords:  cancer; cell metabolism; chromatin modification; epigenetics
  3. Nat Commun. 2021 06 09. 12(1): 3486
      The metabolome represents a complex network of biological events that reflects the physiologic state of the organism in health and disease. Additionally, specific metabolites and metabolic signaling pathways have been shown to modulate animal ageing, but whether there are convergent mechanisms uniting these processes remains elusive. Here, we used high resolution mass spectrometry to obtain the metabolomic profiles of canonical longevity pathways in C. elegans to identify metabolites regulating life span. By leveraging the metabolomic profiles across pathways, we found that one carbon metabolism and the folate cycle are pervasively regulated in common. We observed similar changes in long-lived mouse models of reduced insulin/IGF signaling. Genetic manipulation of pathway enzymes and supplementation with one carbon metabolites in C. elegans reveal that regulation of the folate cycle represents a shared causal mechanism of longevity and proteoprotection. Such interventions impact the methionine cycle, and reveal methionine restriction as an underlying mechanism. This comparative approach reveals key metabolic nodes to enhance healthy ageing.
  4. Methods Mol Biol. 2021 ;2310 271-285
      NAD+ is a redox cofactor essential to the proper functioning of a variety of important metabolic pathways, including key steps in mitochondrial energy metabolism. In addition, it serves as a signaling substrate for enzymes such as sirtuins and the poly-ADP ribosyl-polymerase family of enzymes. Sirtuins, which are NAD+-dependent protein deacylases, harness changes in cellular NAD+ concentrations to produce changes in protein acylation status, thereby affecting downstream functions including energy metabolism, stress resistance, and cell survival. Thus, the availability of NAD+ in cells, or in specific organelles such as the mitochondrion, regulates downstream signaling and key biological processes. This concept has driven a need for researchers to easily and precisely measure NAD+ concentrations in biological samples. We herein describe several protocols for the measurement of NAD+ and NADH concentrations in tissues, cells, or subcellular compartments such as mitochondria. These protocols include a cycling assay that can quickly measure NAD+ or NADH levels using a plate reader equipped with fluorescence measurement capabilities. This plate assay relies only upon commercially available materials in addition to the biological samples of interest. In addition, we describe a protocol employing stable isotope-labeled NAD+ as an internal standard to determine biological NAD+ content by isotope-dilution methods. This method requires mass spectrometry to ratio endogenous NAD+ with exogenous isotope-labeled NAD+ to obtain quantification using HPLC and mass spectrometry.
    Keywords:  18O-NAD+; Diaphorase; HPLC; Isotopes; LC-MS; Lactate; Lactate dehydrogenase (LDH); Mitochondria isolation; NAD+; NAD+/NADH cycling assay; Resazurin; Resorufin
  5. Mass Spectrom Rev. 2021 Jun 06.
      Advancements in liquid chromatography and mass spectrometry over the last decades have led to a significant development in mass spectrometry-based proteome quantification approaches. An increasingly attractive strategy is multiplex isotope labeling, which significantly improves the accuracy, precision and throughput of quantitative proteomics in the data-dependent acquisition mode. Isotope labeling-based approaches can be classified into MS1-based and MS2-based quantification. In this review, we give an overview of approaches based on chemical isotope labeling and discuss their principles, benefits, and limitations with the goal to give insights into fundamental questions and provide a useful reference for choosing a method for quantitative proteomics. As a perspective, we discuss the current possibilities and limitations of multiplex, isotope labeling approaches for the data-independent acquisition mode, which is increasing in popularity.
    Keywords:  fragment ion; isobaric labeling; quantitative proteomics; stable isotope labeling; tandem mass spectrometry
  6. Cancer Metab. 2021 Jun 11. 9(1): 26
      BACKGROUND: Metabolic reprogramming is a common phenomenon in tumorigenesis and tumor progression. Amino acids are important mediators in cancer metabolism, and their kinetics in tumor tissue are far from being understood completely. Mass spectrometry imaging is capable to spatiotemporally trace important endogenous metabolites in biological tissue specimens. In this research, we studied L-[ring-13C6]-labeled phenylalanine and tyrosine kinetics in a human non-small cell lung carcinoma (NSCLC) xenografted mouse model using matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FTICR-MSI).METHODS: We investigated the L-[ring-13C6]-Phenylalanine (13C6-Phe) and L-[ring-13C6]-Tyrosine (13C6-Tyr) kinetics at 10 min (n = 4), 30 min (n = 3), and 60 min (n = 4) after tracer injection and sham-treated group (n = 3) at 10 min in mouse-xenograft lung tumor tissues by MALDI-FTICR-MSI.
    RESULTS: The dynamic changes in the spatial distributions of 19 out of 20 standard amino acids are observed in the tumor tissue. The highest abundance of 13C6-Phe was detected in tumor tissue at 10 min after tracer injection and decreased progressively over time. The overall enrichment of 13C6-Tyr showed a delayed temporal trend compared to 13C6-Phe in tumor caused by the Phe-to-Tyr conversion process. Specifically, 13C6-Phe and 13C6-Tyr showed higher abundances in viable tumor regions compared to non-viable regions.
    CONCLUSIONS: We demonstrated the spatiotemporal intra-tumoral distribution of the essential aromatic amino acid 13C6-Phe and its de-novo synthesized metabolite 13C6-Tyr by MALDI-FTICR-MSI. Our results explore for the first time local phenylalanine metabolism in the context of cancer tissue morphology. This opens a new way to understand amino acid metabolism within the tumor and its microenvironment.
    Keywords:  Amino acids; Isotope labeling; L-[ring-13C6]-Phenylalanine; L-[ring-13C6]-Tyrosine; Mass spectrometry imaging; Tumor
  7. Methods Mol Biol. 2021 ;2275 379-391
      Untargeted lipidomics profiling by liquid chromatography -mass spectrometry (LC-MS) allows researchers to observe the occurrences of lipids in a biological sample without showing intentional bias to any specific class of lipids and allows retrospective reanalysis of data collected. Typically, and in the specific method described, a general extraction method followed by LC separation is used to achieve nonspecific class coverage of the lipidome prior to high resolution accurate mass (HRAM) MS detection . Here we describe a workflow including the isolation of mitochondria from liver tissue, followed by mitochondrial lipid extraction and the LC-MS conditions used for data acquisition. We also highlight how, in this method, all ion fragmentation can be used to identify species of lower abundances, often missed by data dependent fragmentation techniques. Here we describe the isolation of mitochondria from liver tissue, followed by mitochondrial lipid extraction and the LC-MS conditions used for data acquisition.
    Keywords:  Cardiolipins; HCD; LC-MS; Lipidomics; Lysophospholipids; Mitochondria
  8. OMICS. 2021 Jun;25(6): 389-399
      Metabolomics is a leading frontier of systems science and biomedical innovation. However, metabolite identification in mass spectrometry (MS)-based global metabolomics investigations remains a formidable challenge. Moreover, lack of comprehensive spectral databases hinders accurate identification of compounds in global MS-based metabolomics. Creating experiment-derived metabolite spectral libraries tailored to each experiment is labor-intensive. Therefore, predicted spectral libraries could serve as a better alternative. User-friendly tools are much needed, as the currently available metabolomic analysis tools do not offer adequate provision for users to create or choose context-specific databases. Here, we introduce the MS2Compound, a metabolite identification tool, which can be used to generate a custom database of predicted spectra using the Competitive Fragmentation Modeling-ID (CFM-ID) algorithm, and identify metabolites or compounds from the generated database. The database generator can create databases of the model/context/species used in the metabolomics study. The MS2Compound is also powered with mS-score, a scoring function for matching raw fragment spectra to a predicted spectra database. We demonstrated that mS-score is robust in par with dot product and hypergeometric score in identifying metabolites using benchmarking datasets. We evaluated and highlight here the unique features of the MS2Compound by a re-analysis of a publicly available metabolomic dataset (MassIVE id: MSV000086784) for a complex traditional drug formulation called Triphala. In conclusion, we believe that the omics systems science and biomedical research and innovation community in the field of metabolomics will find the MS2Compound as a user-friendly analysis tool of choice to accelerate future metabolomic analyses.
    Keywords:  MS2Compound; bioinformatics; computational biology; data analysis; metabolite identification; metabolomics; systems science
  9. Cell Rep. 2021 Jun 08. pii: S2211-1247(21)00562-3. [Epub ahead of print]35(10): 109212
      Obesity is an established risk factor for cancer in many tissues. In the mammalian intestine, a pro-obesity high-fat diet (HFD) promotes regeneration and tumorigenesis by enhancing intestinal stem cell (ISC) numbers, proliferation, and function. Although PPAR (peroxisome proliferator-activated receptor) nuclear receptor activity has been proposed to facilitate these effects, their exact role is unclear. Here we find that, in loss-of-function in vivo models, PPARα and PPARδ contribute to the HFD response in ISCs. Mechanistically, both PPARs do so by robustly inducing a downstream fatty acid oxidation (FAO) metabolic program. Pharmacologic and genetic disruption of CPT1A (the rate-controlling enzyme of mitochondrial FAO) blunts the HFD phenotype in ISCs. Furthermore, inhibition of CPT1A dampens the pro-tumorigenic consequences of a HFD on early tumor incidence and progression. These findings demonstrate that inhibition of a HFD-activated FAO program creates a therapeutic opportunity to counter the effects of a HFD on ISCs and intestinal tumorigenesis.
    Keywords:  Apc; Cpt1a; Ppar; fatty acid oxidation; high-fat diet; intestinal stem cells
  10. Cancer Sci. 2021 Jun 06.
      Amino acids are indispensable nutrients for both normal and cancer cells. Cancer cells are unable to synthesize essential amino acids as well as some non-essential amino acids adequately to support rapid proliferation, and must uptake amino acids from the surroundings. In order to meet the increased demand for amino acids needed for proliferation, high levels of amino acid transporters are expressed on the surface of cancer cells. Cancer cells utilize amino acids to synthesize proteins and nucleotides, as well as to obtain energy. In addition, amino acids are known to play pathological roles in cancer cells. Interestingly, breast cancer cells limit the use of amino acids for cell proliferation according to amino acid availability, which depends on estrogen receptor status. Here, we present a summarized literature review of novel amino acid functions in cancer cells. This review organizes the knowledge available on two amino acid transporters, SLC7A5 and SLC7A11, which are considered essential for breast cancer cell growth in a cell-dependent manner. In particular, we propose the glutamine recycling model to clarify the mechanism underlying aberrant SLC7A5 activation. Finally, we overview the pathological significances of SLC7A5 and SLC7A11 in cancer tissues.
    Keywords:  Amino acid transporter; Breast cancer; Cell proliferation; Cystine uptake; Leucine uptake
  11. Life Sci. 2021 Jun 05. pii: S0024-3205(21)00680-9. [Epub ahead of print] 119694
      Cancer is a leading cause of death globally. Cancer cell transformation is the result of intricate crosstalk between intracellular components and proteins. A characteristic feature of cancer cells is the ability to reprogram their metabolic pathways to ensure their infinite proliferative potential. Pyruvate kinase muscle isoform 2 (PKM2) is a glycolytic enzyme that plays a crucial role in cancer, apart from carrying out its metabolic roles. PKM2 is involved in all the major events associated with cancer growth. Modulation of PKM2 activity (dimer inhibition or tetramer activation) has been successful in controlling cancer. However, recent studies provide contrary evidences regarding the oncogenic functions of PKM2. Moreover, several studies have highlighted the cancerous roles of PKM1 isoform in certain contexts. The present review aims at providing the current updates regarding PKM2 targeting in cancer. Further, the review discusses the contradictory results that suggest that both the isoforms of PKM can lead to cancer growth. In conclusion, the review emphasizes revisiting the approaches to target cancer metabolism through PKM to find novel and effective targets for anticancer therapy.
    Keywords:  Cancer; Cancer metabolism; PKM1; PKM2; Pyruvate kinase
  12. Redox Biol. 2021 Jun 01. pii: S2213-2317(21)00179-8. [Epub ahead of print]45 102021
      Ferroptosis is a programmed iron-dependent cell death associated with peroxidation of lipids particularly, phospholipids. Several studies suggested a possible contribution of mitochondria to ferroptosis although the mechanisms underlying mitochondria-mediated ferroptotic pathways remain elusive. Reduced glutathione (GSH) is a central player in ferroptosis that is required for glutathione peroxidase 4 to eliminate oxidized phospholipids. Mitochondria do not produce GSH, and although the transport of GSH to mitochondria is not fully understood, two carrier proteins, the dicarboxylate carrier (DIC, SLC25A10) and the oxoglutarate carrier (OGC, SLC25A11) have been suggested to participate in GSH transport. Here, we elucidated the role of DIC and OGC as well as mitochondrial bioenergetics in ferroptosis in H9c2 cardioblasts. Results showed that mitochondria are highly sensitive to ferroptotic stimuli displaying fragmentation, and lipid peroxidation shortly after the onset of ferroptotic stimulus. Inhibition of electron transport chain complexes and oxidative phosphorylation worsened RSL3-induced ferroptosis. LC-MS/MS analysis revealed a dramatic increase in the levels of pro-ferroptotic oxygenated phosphatidylethanolamine species in mitochondria in response to RSL3 (ferroptosis inducer) and cardiac ischemia-reperfusion. Inhibition of DIC and OGC aggravated ferroptosis and increased mitochondrial ROS, membrane depolarization, and GSH depletion. Dihydrolipoic acid, an essential cofactor for several mitochondrial multienzyme complexes, attenuated ferroptosis and induced direct reduction of pro-ferroptotic peroxidized phospholipids to hydroxy-phospholipids in vitro. In conclusion, we suggest that ferroptotic stimuli diminishes mitochondrial bioenergetics and stimulates GSH depletion and glutathione peroxidase 4 inactivation leading to ferroptosis.
    Keywords:  Ferroptosis; Glutathione; Heart; Ischemia-reperfusion; Mitochondria; Oxidized phosphatidylethanolamine
  13. Immunity. 2021 May 28. pii: S1074-7613(21)00209-0. [Epub ahead of print]
      A common metabolic alteration in the tumor microenvironment (TME) is lipid accumulation, a feature associated with immune dysfunction. Here, we examined how CD8+ tumor infiltrating lymphocytes (TILs) respond to lipids within the TME. We found elevated concentrations of several classes of lipids in the TME and accumulation of these in CD8+ TILs. Lipid accumulation was associated with increased expression of CD36, a scavenger receptor for oxidized lipids, on CD8+ TILs, which also correlated with progressive T cell dysfunction. Cd36-/- T cells retained effector functions in the TME, as compared to WT counterparts. Mechanistically, CD36 promoted uptake of oxidized low-density lipoproteins (OxLDL) into T cells, and this induced lipid peroxidation and downstream activation of p38 kinase. Inhibition of p38 restored effector T cell functions in vitro, and resolution of lipid peroxidation by overexpression of glutathione peroxidase 4 restored functionalities in CD8+ TILs in vivo. Thus, an oxidized lipid-CD36 axis promotes intratumoral CD8+ T cell dysfunction and serves as a therapeutic avenue for immunotherapies.
    Keywords:  CD36; CD8(+) T cells; lipid peroxidation; oxidized lipids; tumor microenvironment
  14. Nat Commun. 2021 06 07. 12(1): 3346
      Characterizing the human leukocyte antigen (HLA) bound ligandome by mass spectrometry (MS) holds great promise for developing vaccines and drugs for immune-oncology. Still, the identification of non-tryptic peptides presents substantial computational challenges. To address these, we synthesized and analyzed >300,000 peptides by multi-modal LC-MS/MS within the ProteomeTools project representing HLA class I & II ligands and products of the proteases AspN and LysN. The resulting data enabled training of a single model using the deep learning framework Prosit, allowing the accurate prediction of fragment ion spectra for tryptic and non-tryptic peptides. Applying Prosit demonstrates that the identification of HLA peptides can be improved up to 7-fold, that 87% of the proposed proteasomally spliced HLA peptides may be incorrect and that dozens of additional immunogenic neo-epitopes can be identified from patient tumors in published data. Together, the provided peptides, spectra and computational tools substantially expand the analytical depth of immunopeptidomics workflows.
  15. J Biol Chem. 2021 Apr 29. pii: S0021-9258(21)00525-1. [Epub ahead of print] 100736
      Hydrogen sulfide is synthesized by enzymes involved in sulfur metabolism and oxidized via a dedicated mitochondrial pathway that intersects with the electron transport chain (ETC) at the level of complex III. Studies with H2S are challenging since it is volatile and also reacts with oxidized thiols in the culture medium, forming sulfane sulfur species. The half-life of exogenously added H2S to cultured cells is unknown. In this study, we first examined the half-life of exogenously added H2S to human colonic epithelial cells. In plate cultures, H2S disappeared with a t1/2 of 3-4 min at 37°C with a small fraction being trapped as sulfane sulfur species. In suspension cultures, the rate of abiotic loss of H2S was slower, and we demonstrated that sulfide stimulated aerobic glycolysis, which was sensitive to the mitochondrial but not the cytoplasmic NADH pool. Oxidation of mitochondrial NADH using the genetically encoded mito-LbNOX tool, blunted the cellular sensitivity to sulfide-stimulated aerobic glycolysis and enhanced its oxidation to thiosulfate. In contrast, sulfide did not affect flux through the oxidative pentose phosphate pathway or the TCA cycle. Knockdown of sulfide quinone oxidoreductase, which commits H2S to oxidation, sensitized cells to sulfide-stimulated aerobic glycolysis. Finally, we observed that sulfide decreased ATP levels in cells. The dual potential of H2S to activate oxidative phosphorylation at low concentrations, but inhibit it at high concentrations, suggests that it might play a role in tuning electron flux and therefore, cellular energy metabolism, particularly during cell proliferation.
    Keywords:  Hydrogen sulfide; aerobic glycolysis; electron transport chain; sulfide quinone oxidoreductase
  16. J Proteomics. 2021 Jun 02. pii: S1874-3919(21)00189-5. [Epub ahead of print]245 104290
      Sleep deprivation (SD) has been linked to impaired mental and physical health, obesity, and various diseases. However, the molecular mechanism underlying the effects of SD in the liver is still unclear. To investigate the metabolome and proteome alterations in the liver, an in vivo model of SD was established based on automated random motion platform techniques by applying a strategy of 10 consecutive days of 20 h of sleep deprivation +4 h of resting. The liver's altered metabolites and proteins were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and data analyses were performed with MetaboAnalyst 5.0. This study found 15 differential metabolites, including 12 upregulated- metabolites and 3 downregulated- metabolites. A total of 493 proteins were differentially regulated, including 377 upregulated- proteins and 116 downregulated- proteins. The glutathione metabolism, fructose and mannose metabolism, and pyruvate metabolism pathways had significant effects on the sleep-deprived mouse livers. These three active pathways cause energy metabolism disorder and may induce obesity. In conclusion, this study demonstrates that SD could change the metabolism of glucose, and specific fatty acids, amino acids, and critical enzymes in the liver, providing a reference for the health effects of insufficient sleep. SIGNIFICANCE STATEMENT: So far, little is known about the changes in metabolites and proteins in the liver of individuals who suffer from SD. Metabolites and proteins in serum, urine and hypothalamus do not entirely reflect the effects of sleep deprivation on the whole body. In addition, many SD-induced models used the multiplatform water environment method, which causes mice to fall into the water frequently. Under this condition, the physical exertion of mice is extremely high, and it is not suitable for long-term sleep deprivation. The SD induction process has caused some influence on the model. Finally, few studies have elucidated the imbalance of energy metabolism caused by SD to induce obesity from the molecular mechanism. This study used a rotary table deprivation apparatus to trigger SD. This method will not cause excessive consumption and stimulation of mice. Furthermore, this study analyzed the metabolic and proteomic changes in the liver and enriched the range and means of metabolic and proteomic changes in sleep deprived mice. Finally, this research provides reference for elucidating the molecular mechanism of sleep deprivation causing energy metabolism disorders in the liver of mice.
    Keywords:  Energy metabolism; LC-MS/MS; Liver; Pathway; Sleep deprivation
  17. Arthritis Res Ther. 2021 Jun 08. 23(1): 164
      BACKGROUND: Rheumatoid arthritis (RA) is a chronic, autoimmune disorder characterized by joint inflammation and pain. In patients with RA, metabolomic approaches, i.e., high-throughput profiling of small-molecule metabolites, on plasma or serum has thus far enabled the discovery of biomarkers for clinical subgroups, risk factors, and predictors of treatment response. Despite these recent advancements, the identification of blood metabolites that reflect quantitative disease activity remains an important challenge in precision medicine for RA. Herein, we use global plasma metabolomic profiling analyses to detect metabolites associated with, and predictive of, quantitative disease activity in patients with RA.METHODS: Ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was performed on a discovery cohort consisting of 128 plasma samples from 64 RA patients and on a validation cohort of 12 samples from 12 patients. The resulting metabolomic profiles were analyzed with two different strategies to find metabolites associated with RA disease activity defined by the Disease Activity Score-28 using C-reactive protein (DAS28-CRP). More specifically, mixed-effects regression models were used to identify metabolites differentially abundant between two disease activity groups ("lower", DAS28-CRP ≤ 3.2; and "higher", DAS28-CRP > 3.2) and to identify metabolites significantly associated with DAS28-CRP scores. A generalized linear model (GLM) was then constructed for estimating DAS28-CRP using plasma metabolite abundances. Finally, for associating metabolites with CRP (an indicator of inflammation), metabolites differentially abundant between two patient groups ("low-CRP", CRP ≤ 3.0 mg/L; "high-CRP", CRP > 3.0 mg/L) were investigated.
    RESULTS: We identified 33 metabolites differentially abundant between the lower and higher disease activity groups (P < 0.05). Additionally, we identified 51 metabolites associated with DAS28-CRP (P < 0.05). A GLM based upon these 51 metabolites resulted in higher prediction accuracy (mean absolute error [MAE] ± SD: 1.51 ± 1.77) compared to a GLM without feature selection (MAE ± SD: 2.02 ± 2.21). The predictive value of this feature set was further demonstrated on a validation cohort of twelve plasma samples, wherein we observed a stronger correlation between predicted and actual DAS28-CRP (with feature selection: Spearman's ρ = 0.69, 95% CI: [0.18, 0.90]; without feature selection: Spearman's ρ = 0.18, 95% CI: [-0.44, 0.68]). Lastly, among all identified metabolites, the abundances of eight were significantly associated with the CRP patient groups while controlling for potential confounders (P < 0.05).
    CONCLUSIONS: We demonstrate for the first time the prediction of quantitative disease activity in RA using plasma metabolomes. The metabolites identified herein provide insight into circulating pro-/anti-inflammatory metabolic signatures that reflect disease activity and inflammatory status in RA patients.
    Keywords:  Biomarker; DAS28-CRP; Inflammation; Machine learning; Metabolomics; Plasma metabolites; Rheumatoid arthritis
  18. Annu Rev Nutr. 2021 Jun 11.
      The endocannabinoid system is involved in signal transduction in mammals. It comprises principally G protein-coupled cannabinoid receptors and their endogenous agonists, called endocannabinoids, as well as the enzymes and transporters responsible for the metabolism of endocannabinoids. Two arachidonic acid-containing lipid molecules, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, function as endocannabinoids. N-acylethanolamines and monoacylglycerols, in which the arachidonic acid chain is replaced with a saturated or monounsaturated fatty acid, are not directly involved in the endocannabinoid system but exhibit agonistic activities for other receptors. These endocannabinoid-like molecules include palmitoylethanolamide, oleoylethanolamide (OEA), and 2-oleoylglycerol. Endocannabinoids stimulate feeding behavior and the anabolism of lipids and glucose, while OEA suppresses appetite. Both central and peripheral systems are included in these nutritional and metabolic contexts. Therefore, they have potential in the treatment and prevention of obesity. We outline the structure, metabolism, and biological activities of endocannabinoids and related molecules, and focus on their involvement in energy homeostasis and metabolic regulation. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see for revised estimates.
  19. Front Oncol. 2021 ;11 674720
      Tumor cells require a higher supply of nutrients for growth and proliferation than normal cells. It is well established that metabolic reprograming in cancers for increased nutrient supply exposes a host of targetable vulnerabilities. In this article we review the documented changes in expression patterns of amino acid metabolic enzymes and transporters in myeloid malignancies and the growing list of small molecules and therapeutic strategies used to disrupt amino acid metabolic circuits within the cell. Pharmacological inhibition of amino acid metabolism is effective in inducing cell death in leukemic stem cells and primary blasts, as well as in reducing tumor burden in in vivo murine models of human disease. Thus targeting amino acid metabolism provides a host of potential translational opportunities for exploitation to improve the outcomes for patients with myeloid malignancies.
    Keywords:  amino acids; metabolism; myeloid dysplasia; myeloid neoplasia; therapy
  20. J Steroid Biochem Mol Biol. 2021 Jun 02. pii: S0960-0760(21)00117-5. [Epub ahead of print] 105924
      Endogenous Cushing syndrome (CS) is an endocrine disorder marked by excess cortisol production rendering patients susceptible to visceral obesity, dyslipidemia, hypertension, osteoporosis and diabetes mellitus. Adrenal CS is characterized by autonomous production of cortisol from cortisol-producing adenomas (CPA) via adrenocorticotropic hormone-independent mechanisms. A limited number of studies have quantified the steroid profiles in sera from patients with CS. To understand the intratumoral steroid biosynthesis, we quantified 19 steroids by mass spectrometry in optimal cutting temperature compound (OCT)-embedded 24 CPA tissue from patients with overt CS (OCS, n = 10) and mild adrenal cortisol excess (MACE, n = 14). Where available, normal CPA-adjacent adrenal tissue (AdjN) was also collected and used for comparison (n = 8). Immunohistochemistry (IHC) for CYP17A1 and HSD3B2, two steroidogenic enzymes required for cortisol synthesis, was performed on OCT sections to confirm the presence of tumor tissue and guided subsequent steroid extraction from the tumor. LC-MS/MS was used to quantify steroids extracted from CPA and AdjN. Our data indicated that CPA demonstrated increased concentrations of cortisol, cortisone, 11-deoxycortisol, corticosterone, progesterone, 17OH-progesterone and 16OH-progesterone as compared to AdjN (p < 0.05). Compared to OCS, MACE patient CPA tissue displayed higher concentrations of corticosterone, 18OH-corticosterone, 21-deoxycortisol, progesterone, and 17OH-progesterone (p < 0.05). These findings also demonstrate that OCT-embedded tissue can be used to define intra-tissue steroid profiles, which will have application for steroid-producing and steroid-responsive tumors.
    Keywords:  LC-MS/MS; OCT-embedded tissue; cortisol-producing adenoma; mild adrenal cortisol excess; steroid profiling
  21. Front Oncol. 2021 ;11 682911
      Cholesterol is a ubiquitous sterol with many biological functions, which are crucial for proper cellular signaling and physiology. Indeed, cholesterol is essential in maintaining membrane physical properties, while its metabolism is involved in bile acid production and steroid hormone biosynthesis. Additionally, isoprenoids metabolites of the mevalonate pathway support protein-prenylation and dolichol, ubiquinone and the heme a biosynthesis. Cancer cells rely on cholesterol to satisfy their increased nutrient demands and to support their uncontrolled growth, thus promoting tumor development and progression. Indeed, transformed cells reprogram cholesterol metabolism either by increasing its uptake and de novo biosynthesis, or deregulating the efflux. Alternatively, tumor can efficiently accumulate cholesterol into lipid droplets and deeply modify the activity of key cholesterol homeostasis regulators. In light of these considerations, altered pathways of cholesterol metabolism might represent intriguing pharmacological targets for the development of exploitable strategies in the context of cancer therapy. Thus, this work aims to discuss the emerging evidence of in vitro and in vivo studies, as well as clinical trials, on the role of cholesterol pathways in the treatment of cancer, starting from already available cholesterol-lowering drugs (statins or fibrates), and moving towards novel potential pharmacological inhibitors or selective target modulators.
    Keywords:  cancer; cancer therapy; cholesterol; metabolic reprogramming; metabolic targeting agents; pharmacological modulation; pharmacological targeting
  22. Curr Osteoporos Rep. 2021 Jun 12.
      PURPOSE OF REVIEW: In this review, we provide a recent update on bioenergetic pathways in osteocytes and identify potential future areas of research interest. Studies have identified a role for regulation of bone formation and bone resorption through osteocyte mechanosensing and osteocyte secreted factors. Nevertheless, there is a paucity of studies on the bioenergetics and energy metabolism of osteocytes, which are required for the regulation of bone remodeling.RECENT FINDINGS: Osteocytes are cells of the osteoblast lineage embedded in bone. The osteocyte lacunocanalicular network within the skeletal matrix is exposed to a unique hypoxic environment. Therefore, the bioenergetic requirements of these cells could differ from other bone cells due to its location in the ossified matrix and its role in bone regulation transduced by mechanical signals. Recent findings highlighted in this review provide some evidence that metabolism of these cells is dependent on their location due to the substrates present in the microenvironment and metabolic cues from stress pathways. Both glycolysis (glucose metabolism) and oxidative phosphorylation (mitochondrial dynamics, ROS generation) affect osteocyte function and viability. In this review, we provide evidence that is currently available about information regarding bioenergetics pathways in osteocytes. We discuss published studies showing a role for hypoxia-driven glucose metabolism in regulating osteocyte bioenergetics. We also provide information on various substrates that osteocytes could utilize to fuel energetic needs, namely pyruvate, amino acids, and fatty acids. This is based on some preliminary experimental evidence that is available in literature. The role of parathyroid hormone PTH and parathryoid hormone-related peptide PTHrP in bone anabolism and resorption, along with regulation of metabolic pathways in the cells of the skeletal niche, needs to be explored further. Mitochondrial metabolism has a role in osteocyte bioenergetics through substrate utilization, location of the osteocyte in the bone cortex, and mitochondrial biogenesis. While there are limitations in studying metabolic flux in traditional cell lines, there are now novel cell lines and sophisticated tools available to study osteocyte bioenergetics to help harness its potential in vivo in the future.
    Keywords:  Glycolysis; Metabolism; Mitochondria; Osteocytes; Oxidative phosphorylation
  23. J Am Soc Mass Spectrom. 2021 Jun 07.
      Vegetables oils, rich in polyunsaturated fatty acids, are vulnerable to oxidation during manufacturing, processing, and food preparation. Currently, individual oxidation products are not well characterized, and hence, the health impacts of these unique lipid species remain unknown. Here, we introduce an extensive oxidized lipidomics in silico tandem mass spectrometry library and integrate these libraries within a user-friendly software covering a comprehensive redox lipidomics workflow. We apply this workflow to olive, soy, and walnut cooking oil; comparing unheated oil, oil after deep frying potatoes, and oil after oven frying potatoes. We annotated over a thousand oxidized triglycerides across 273 features (many coeluted). This software was validated against traditional chemical assays of oxidation, known oxidized lipids in castor oil, synthesized standards, and an alternate software LPPtiger. Development of these new software programs for redox lipidomics opens the door to characterize health implications of individual oxidation products.
    Keywords:  LPPtiger; LipidMatch; baking; frying; high-resolution mass spectrometry; lipidomics; liquid chromatography; mass spectrometry; oxidation; oxidized oils; oxidized triglycerides; rancid; redox lipidomics; software; triglycerides
  24. Nat Methods. 2021 Jun;18(6): 604-617
      Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease diagnostics.
  25. Anal Chim Acta. 2021 Jul 25. pii: S0003-2670(21)00432-3. [Epub ahead of print]1170 338606
      We have developed an analytical procedure to measure the carbon isotopic composition of multiple compounds even when there is a partial overlap in the chromatographic profiles and applied this procedure to measure the carbon isotopic composition of different metabolites in human urine and exhaled breath. Method development and validation was performed with CRM IAEA-600 caffeine after calibration of the reference CO2 gas using a mixture of certified undecane, pentadecane and eicosane δ(13C) standards. The alternative data treatment procedure included the correction of time-lag between Faraday cup amplifiers (44 ms at mass 45 and -160 ms at mass 46), the calculation and correction of chromatographic isotope effects on each peak (isotope shifts) and the calculation of the isotope ratio for each compound using the linear regression slope procedure with data only at the top of the chromatographic peak. In that way, partial chromatographic overlap between different metabolites can be tolerated (resolution equal or higher than 1). The reproducibility (SD) of the carbon isotope composition of 93 metabolites in human urine (n = 8) from one volunteer was typically better than 0.5 δ(13C) (range 0.1-2.0 δ(13C), median 0.4 δ(13C)). The method was applied to follow the carbon isotope composition of different metabolites in human urine and exhaled breath after the oral administration of 100 mg of universally labelled 13C-glucose to another human volunteer. It was demonstrated that isotopically labelled compounds could be detected in both samples even 2 h after administration. So, the developed methodology can be applied to multiple types of samples containing a large number of partially overlapping analytes including environmental applications, anti-doping control or metabolomics studies, including the use of enriched isotope tracers.
    Keywords:  Carbon isotope ratios; Exhaled breath; Metabolomics; Urine
  26. Nat Commun. 2021 Jun 11. 12(1): 3576
      Formalin-fixed paraffin-embedded (FFPE) tissues are a valuable resource for retrospective clinical studies. Here, we evaluate the feasibility of (phospho-)proteomics on FFPE lung tissue regarding protein extraction, quantification, pre-analytics, and sample size. After comparing protein extraction protocols, we use the best-performing protocol for the acquisition of deep (phospho-)proteomes from lung squamous cell and adenocarcinoma with >8,000 quantified proteins and >14,000 phosphosites with a tandem mass tag (TMT) approach. With a microscaled approach, we quantify 7,000 phosphosites, enabling the analysis of FFPE biopsies with limited tissue amounts. We also investigate the influence of pre-analytical variables including fixation time and heat-assisted de-crosslinking on protein extraction efficiency and proteome coverage. Our improved workflows provide quantitative information on protein abundance and phosphosite regulation for the most relevant oncogenes, tumor suppressors, and signaling pathways in lung cancer. Finally, we present general guidelines to which methods are best suited for different applications, highlighting TMT methods for comprehensive (phospho-)proteome profiling for focused clinical studies and label-free methods for large cohorts.
  27. Cell Metab. 2021 May 31. pii: S1550-4131(21)00226-6. [Epub ahead of print]
      Mechanical signals from the tumor microenvironment modulate cell mechanics and influence cell metabolism to promote cancer aggressiveness. Cells withstand external forces by adjusting the stiffness of their cytoskeleton. Microtubules (MTs) act as compression-bearing elements. Yet how cancer cells regulate MT dynamic in response to the locally constrained environment has remained unclear. Using breast cancer as a model of a disease in which mechanical signaling promotes disease progression, we show that matrix stiffening rewires glutamine metabolism to promote MT glutamylation and force MT stabilization, thereby promoting cell invasion. Pharmacologic inhibition of glutamine metabolism decreased MT glutamylation and affected their mechanical stabilization. Similarly, decreased MT glutamylation by overexpressing tubulin mutants lacking glutamylation site(s) decreased MT stability, thereby hampering cancer aggressiveness in vitro and in vivo. Together, our results decipher part of the enigmatic tubulin code that coordinates the fine-tunable properties of MT and link cell metabolism to MT dynamics and cancer aggressiveness.
    Keywords:  breast cancer; cancer cell metabolism; glutamine metabolism; glutamylation; mechanobiology; microtubules; posttranslational modifications
  28. Nat Commun. 2021 06 07. 12(1): 3414
      Pancreatic ductal adenocarcinoma (PDAC) patients have a 5-year survival rate of only 8% largely due to late diagnosis and insufficient therapeutic options. Neutrophils are among the most abundant immune cell type within the PDAC tumor microenvironment (TME), and are associated with a poor clinical prognosis. However, despite recent advances in understanding neutrophil biology in cancer, therapies targeting tumor-associated neutrophils are lacking. Here, we demonstrate, using pre-clinical mouse models of PDAC, that lorlatinib attenuates PDAC progression by suppressing neutrophil development and mobilization, and by modulating tumor-promoting neutrophil functions within the TME. When combined, lorlatinib also improves the response to anti-PD-1 blockade resulting in more activated CD8 + T cells in PDAC tumors. In summary, this study identifies an effect of lorlatinib in modulating tumor-associated neutrophils, and demonstrates the potential of lorlatinib to treat PDAC.
  29. Metabolomics. 2021 Jun 06. 17(6): 55
      BACKGROUND: Improvements in mass spectrometry (MS) technologies coupled with bioinformatics developments have allowed considerable advancement in the measurement and interpretation of lipidomics data in recent years. Since research areas employing lipidomics are rapidly increasing, there is a great need for bioinformatic tools that capture and utilize the complexity of the data. Currently, the diversity and complexity within the lipidome is often concealed by summing over or averaging individual lipids up to (sub)class-based descriptors, losing valuable information about biological function and interactions with other distinct lipids molecules, proteins and/or metabolites.AIM OF REVIEW: To address this gap in knowledge, novel bioinformatics methods are needed to improve identification, quantification, integration and interpretation of lipidomics data. The purpose of this mini-review is to summarize exemplary methods to explore the complexity of the lipidome.
    KEY SCIENTIFIC CONCEPTS OF REVIEW: Here we describe six approaches that capture three core focus areas for lipidomics: (1) lipidome annotation including a resolvable database identifier, (2) interpretation via pathway- and enrichment-based methods, and (3) understanding complex interactions to emphasize specific steps in the analytical process and highlight challenges in analyses associated with the complexity of lipidome data.
    Keywords:  Bioinformatics; Data integration; Lipid Identification; Lipidomics; Ontologies; Pathway enrichment
  30. Nat Commun. 2021 06 08. 12(1): 3464
      Right-sided (proximal) colorectal cancer (CRC) has a poor prognosis and a distinct mutational profile, characterized by oncogenic BRAF mutations and aberrations in mismatch repair and TGFβ signalling. Here, we describe a mouse model of right-sided colon cancer driven by oncogenic BRAF and loss of epithelial TGFβ-receptor signalling. The proximal colonic tumours that develop in this model exhibit a foetal-like progenitor phenotype (Ly6a/Sca1+) and, importantly, lack expression of Lgr5 and its associated intestinal stem cell signature. These features are recapitulated in human BRAF-mutant, right-sided CRCs and represent fundamental differences between left- and right-sided disease. Microbial-driven inflammation supports the initiation and progression of these tumours with foetal-like characteristics, consistent with their predilection for the microbe-rich right colon and their antibiotic sensitivity. While MAPK-pathway activating mutations drive this foetal-like signature via ERK-dependent activation of the transcriptional coactivator YAP, the same foetal-like transcriptional programs are also initiated by inflammation in a MAPK-independent manner. Importantly, in both contexts, epithelial TGFβ-receptor signalling is instrumental in suppressing the tumorigenic potential of these foetal-like progenitor cells.