Acta Pharm Sin B. 2020 Apr;10(4):
582-602
Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays a crucial role catalysing the hydrolysis of monoglycerides into glycerol and fatty acids. It links the endocannabinoid and eicosanoid systems together by degradation of the abundant endocannabinoid 2-arachidaoylglycerol into arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. MAGL inhibitors have been considered as important agents in many therapeutic fields, including anti-nociceptive, anxiolytic, anti-inflammatory, and even anti-cancer. Currently, ABX-1431, a first-in-class inhibitor of MAGL, is entering clinical phase 2 studies for neurological disorders and other diseases. This review summarizes the diverse (patho)physiological roles of MAGL and will provide an overview on the development of MAGL inhibitors. Although a large number of MAGL inhibitors have been reported, novel inhibitors are still required, particularly reversible ones.
Keywords: 2-AG, 2-arachidonoyl glycerol; 2-Arachidaoylglycerol; 2-OG, 2-oleoylglycerol; 4-NPA, 4-nitrophenylacetate; 7-HCA, 7-hydroxycoumarinyl arachidonate; AA, arachidonic acid; ABHD6 and ABHD12, α/β-hydrolase 6 and 12; ABP, activity-based probes; ABPP, activity-based protein profiling; AD, Alzheimer's disease; AEA, anandamide; Arachidonic acid; BCRP, breast cancer resistant protein; CB1R and CB2R, cannabinoid receptors; CC-ABPP, click chemistry activity-based protein profiling; CFA, complete Freund's adjuvant; CNS, central nervous system; COX, cyclooxygenases; CYP, cytochrome P450 proteins; Cancer; DAG, diacylglycerol; DAGLs, diacylglycerol lipases; DTT, dithiothreitol; Drug discovery; EAE, encephalomyelitis; EI, enzyme–inhibitor complex; FAAH, amide hydrolase; FFAs, free fatty acids; FP, fluorophosphonate; FP-Rh, fluorophosphonate-rhodamine; FQ, fit quality; HFD, high-fat diet; HFIP, hexafluoroisopropyl; LC–MS, liquid chromatographic mass spectrometry; LFD, low-fat diet; MAGL, monoacylglycerol lipase; MAGs, monoglycerides; MS, multiple sclerosis; Metabolic syndrome; Monoacylglycerol lipases; NAM, N-arachidonoyl maleimide; NHS, N-hydroxysuccinimidyl; Neuroinflammation; OCT2, organic cation transporter 2; P-gp, P-glycoprotein; PA, phosphatidic acid; PD, Parkinson's disease; PET, positron emission tomography; PGE2, prostaglandin; PGs, prostaglandins; PK, pharmacokinetic; PLA2G7, phospholipase A2 group VII; SAR, structure–activity relationship; SBDD, structure-based drug design; SDS-PAGE, sodium dodecyl sulphate polyacrylamide gel electrophoresis; THL, tetrahydrolipstatin; cPLA2, cytosolic phospholipase A2