bims-malgli Biomed News
on Biology of malignant gliomas
Issue of 2024‒10‒06
ten papers selected by
Oltea Sampetrean, Keio University



  1. Nat Commun. 2024 Oct 01. 15(1): 8506
      Glycolytic metabolic reprogramming in cancer is regulated by both cancer intrinsic variations like isocitrate dehydrogenase 1 (IDH1) status and non-cancerous microenvironment components like tumor associated macrophages (TAMs). However, the detailed mechanism remains elusive. Here, we identify hexosaminidase B (HEXB) as a key regulator for glycolysis in glioblastoma (GBM). HEXB intercellularly manipulates TAMs to promote glycolysis in GBM cells, while intrinsically enhancing cancer cell glycolysis. Mechanistically, HEXB elevation augments tumor HIF1α protein stability through activating ITGB1/ILK/YAP1; Subsequently, HIF1α promotes HEXB and multiple glycolytic gene transcription in GBM cells. Genetic ablation and pharmacological inhibition of HEXB elicits substantial therapeutic effects in preclinical GBM models, while targeting HEXB doesn't induce significant reduction in IDH1 mutant glioma and inhibiting IDH1 mutation-derived 2-hydroxyglutaric acid (2-HG) significantly restores HEXB expression in glioma cells. Our work highlights a HEXB driven TAMs-associated glycolysis-promoting network in GBM and provides clues for developing more effective therapies against it.
    DOI:  https://doi.org/10.1038/s41467-024-52888-0
  2. J Clin Invest. 2024 Oct 01. pii: e178628. [Epub ahead of print]
      Tumor-associated macrophages and microglia (TAMs) are critical for tumor progression and therapy resistance in glioblastoma (GBM), a type of incurable brain cancer. We previously identified lysyl oxidase (LOX) and olfactomedin like-3 (OLFML3) as essential macrophage and microglia chemokines, respectively, in GBM. Here, single-cell transcriptomics and multiplex sequential immunofluorescence followed by functional studies demonstrate that macrophages negatively correlate with microglia in the GBM tumor microenvironment. LOX inhibition in PTEN-deficient GBM cells upregulates OLFML3 expression via the NF-κB-PATZ1 signaling pathway, inducing a compensatory increase of microglia infiltration. Dual targeting macrophages and microglia via inhibition of LOX and the CLOCK-OLFML3 axis generates potent anti-tumor effects and offers a complete tumor regression in more than 60% of animals when combined with anti-PD1 therapy in PTEN-deficient GBM mouse models. Thus, our findings provide a translational triple therapeutic strategy for this lethal disease.
    Keywords:  Brain cancer; Cancer immunotherapy; Macrophages; Oncology
    DOI:  https://doi.org/10.1172/JCI178628
  3. bioRxiv. 2024 Sep 18. pii: 2024.09.11.612571. [Epub ahead of print]
      Background: Glioblastoma (GB) remains a formidable challenge in neuro-oncology, with immune checkpoint blockade (ICB) showing limited efficacy in unselected patients. We previously recently established that MAPK/ERK signaling is associated with overall survival following anti-PD-1 and anti-CTLA-4 treatment in recurrent GB. However, the causal relationship between MAPK/ERK signaling and susceptibility to ICB, as well as the mechanisms underlying this association, remain poorly understood.Method: We conducted in vivo kinome-wide CRISPR/Cas9 screenings in murine gliomas to identify key regulators of susceptibility to anti-PD-1 and CD8 + T cell responses and performed survival studies to validate the most relevant genes. Additionally, paired single cell RNA- sequencing (scRNA-seq) with p-ERK staining, spatial transcriptomics on GB samples, and ex-vivo slice culture of a BRAF V600E mutant GB tumor treated with BRAFi/MEKi were used to determine the causal relationship between MAPK signaling, tumor cell immunogenicity, and modulation of microglia phenotype.
    Results: CRISPR/Cas9 screens identified the MAPK pathway, particularly the RAF-MEK-ERK pathway, as the most critical modulator of glioma susceptibility to CD8 + T cells, and anti-PD-1 across all kinases. Experimentally-induced ERK phosphorylation in gliomas enhanced survival with ICB treatment, led to durable anti-tumoral immunity upon re-challenge and memory T cell infiltration in long-term survivors. Elevated p-ERK in glioma cells correlated with increased interferon responses, antigen presentation and T cell infiltration in GB. Moreover, spatial transcriptomics and scRNA-seq analysis revealed the modulation of interferon responses by the MAPK/ERK pathway in BRAF V600E human GB cells with ERK1/2 knockout and in slice cultures of human BRAF V600E GB tissue. Notably, BRAFi/MEKi treatment disrupted the interaction between tumor cells and tumor-associated macrophages/microglia in slice cultures from BRAF V600E mutant GB.
    Conclusion: Our data indicate that the MAPK/ERK pathway is a critical regulator of GB cell susceptibility to anti-tumoral immunity, modulating interferon responses, and antigen-presentation in glioma cells, as well as tumor cell interaction with microglia. These findings not only elucidate the mechanistic underpinnings of immunotherapy resistance in GB but also highlight the MAPK/ERK pathway as a promising target for enhancing immunotherapeutic efficacy in this challenging malignancy.
    DOI:  https://doi.org/10.1101/2024.09.11.612571
  4. Life Sci. 2024 Oct 01. pii: S0024-3205(24)00679-9. [Epub ahead of print]357 123089
      Glioblastoma multiforme (GBM), also known as grade IV astrocytoma, is the most common and deadly brain tumour. It has a poor prognosis and a low survival rate. GBM cells' immunological escape mechanism helps them resist advanced multimodal therapy. In physiological homeostasis, brain astrocytes and microglia suppress infections and clear the potential pathogen from the system. However, in severe pathological conditions like cancer, the immune response fails to eliminate mutated and rapidly over-proliferating GBM cells. The malignant cells' interactions with immune cells and the neoplasm's immunosuppressive environment enable the avoidance and their clearance. Immunotherapy efficiently addresses these difficulties, as shown by sufficient evidence. This review discusses how GBM cells inhibit and elude the immune system. These include MHC molecule expression alteration and PD-L1 and CTLA-4 immune checkpoint overexpression. Without co-stimulation, these changes induce effector T-cell tolerance and anergy. The review also covers how MDSCs, TAMs, Herpes Virus Entry Mediators, and Human cytomegalovirus protein decrease the effector immune response against glioblastoma. The latter part discusses various therapies that are available in the market or under clinical trials which revolves around combating resistance against the available multimodal therapies. The recent trends indicate that there are various monoclonal antibodies and peptide-based vaccines that can be utilized to overcome the immune evasion technique harbored by GBM cells. A strategic development of Immunotherapy considering these hallmarks of immune evasion may help in designing a therapy that may prove to be effective in killing the GBM cells thereby, improving the overall survival of GBM-affected patients.
    Keywords:  Glioblastoma; Immune checkpoints; Immune evasion; Immunotherapy; Virus; cancer-immunity
    DOI:  https://doi.org/10.1016/j.lfs.2024.123089
  5. Cancer Cell. 2024 Oct 01. pii: S1535-6108(24)00352-0. [Epub ahead of print]
      Gliomas exhibit significant molecular diversity and poor prognosis. In this issue of Cancer Cell, Curry et al. apply Patch-seq on human glioma samples uncovering hybrid cells with glial and neuronal features, capable of firing action potentials in isocitrate dehydrogenase mutant gliomas. These findings highlight the importance of neural features in tumor biology and progression.
    DOI:  https://doi.org/10.1016/j.ccell.2024.09.004
  6. Neuro Oncol. 2024 Oct 05. pii: noae207. [Epub ahead of print]
      BACKGROUND: Sex differences in adult diffuse glioma (ADG) are well-established clinically, yet the underlying molecular mechanisms remain inadequately understood. Here, we aim to reveal molecular features and cellular compositions unique to each sex in ADG to comprehend the role of sex in disease etiology.METHODS: We quantified sex differences in transcriptome of ADG using multiple independent glioma patient datasets. Next, we delved into the single-cell landscape to examine sex differences in gene expression and cellular composition. To explore how sex influences disease progression, we analyzed paired samples from primary and recurrent ADG cases, aiming to identify sex-specific differences in molecular and cellular features.
    RESULTS: Our analysis revealed that mutations in isocitrate dehydrogenase (IDH) genes and the tumor microenvironment emerged as primary influencers of sex-differential molecular enrichments. In IDHwt tumors, genes in neuronal signaling pathway are found to be enriched in male tumors, while genes in hypoxia and inflammatory response pathways are enriched in female tumors. This pattern was reversed in IDHmut gliomas. We hypothesized that these distinctions could be attributed to heterogeneous cellular composition between sexes. Using single-cell data, we observed distinctive patterns of sex differences in cell states, cell composition and cell-cell interaction in IDHwt and IDHmut tumors separately. Further, by comparing molecular changes in paired primary and recurrent ADG samples, we identified sex-specific differences in molecular characteristics and cellular compositions of recurrent tumors.
    CONCLUSION: Our results provide a comprehensive multi-level characterization of sex differences in ADG, such findings provide novel insights into glioma disease progression in each sex.
    Keywords:  Adult diffuse Glioma; Glioblastoma; Sex differences
    DOI:  https://doi.org/10.1093/neuonc/noae207
  7. Neuro Oncol. 2024 Oct 01. pii: noae205. [Epub ahead of print]
      BACKGROUND: Maximum tumor resection improves overall survival (OS) in patients with glioblastoma. The extent of resection (EOR) is historically dichotomized. The RANO resect group recently proposed criteria for volumetry-based EOR assessment in patients that were treated according to Stupp´s protocol. The purpose of this study was (1) to investigate the prognostic value of EOR in patients receiving combined chemotherapy with lomustine (CCNU)/temozolomide (TMZ), and (2) to analyse the prognostic performance of binary EOR assessment compared to volumetric assessment.METHODS: 78 patients with newly diagnosed MGMT-methylated GBM undergoing tumor resection followed by radiochemotherapy with CCNU/TMZ were included in this study. Residual contrast-enhancing (CE) tumor volume after the first resection was measured and its influence on OS and PFS was analysed using uni- and multivariable Cox regression analysis as well as two-sided log rank test. Patients were divided into RTV ≤1 cm³, >1 cm³ - ≤5 cm³ and >5 cm³ following the proposed criteria of the RANO resect group.
    RESULTS: Prolonged OS was associated with age <60 years, low RTV, and gross total resection (GTR). Residual tumor volume (RTV) had a superior prognostic value compared to binary EOR assessment. Patients with total or near total resection of CE tumor (≤1 cm³ RTV) showed prolonged OS (median 54.4 months, 95% CI 46.94-not reached), with a 5-year survival rate of 49%.
    CONCLUSION: Low RTV is associated with increased survival in glioblastoma patients undergoing radiochemotherapy with CCNU/TMZ. This study demonstrates the applicability of the recently proposed RANO resect criteria in this subgroup of patients.
    Keywords:  MGMT-promotor; extend of resection; glioblastoma; residual tumor volume
    DOI:  https://doi.org/10.1093/neuonc/noae205
  8. Commun Biol. 2024 Oct 02. 7(1): 1238
      Human cytoplasmic tRNAs contain dihydrouridine modifications at positions 16 and 17 (D16/D17). The enzyme responsible for D16/D17 formation and its cellular roles remain elusive. Here, we identify DUS1L as the human tRNA D16/D17 writer. DUS1L knockout in the glioblastoma cell lines LNZ308 and U87 causes loss of D16/D17. D formation is reconstituted in vitro using recombinant DUS1L in the presence of NADPH or NADH. DUS1L knockout/overexpression in LNZ308 cells shows that DUS1L supports cell growth. Moreover, higher DUS1L expression in glioma patients is associated with poorer prognosis. Upon vector-mediated DUS1L overexpression in LNZ308 cells, 5' and 3' processing of precursor tRNATyr(GUA) is inhibited, resulting in a reduced mature tRNATyr(GUA) level, reduced translation of the tyrosine codons UAC and UAU, and reduced translational readthrough of the near-cognate stop codons UAA and UAG. Moreover, DUS1L overexpression increases the amounts of several D16/D17-containing tRNAs and total cellular translation. Our study identifies a human dihydrouridine writer, providing the foundation to study its roles in health and disease.
    DOI:  https://doi.org/10.1038/s42003-024-06942-8
  9. Lancet Oncol. 2024 Oct;pii: S1470-2045(24)00190-6. [Epub ahead of print]25(10): e512-e519
      Patients with brain tumours are motivated to participate in clinical trials involving repeat tissue sampling. Normalising the use of neoadjuvant and staged surgical trials necessitates collaboration among patients, regulatory agencies, and researchers. Initial and repetitive tissue sampling plays a crucial role in enhancing our understanding of resistance mechanisms and vulnerabilities in brain tumour therapy. Standardising biopsy techniques and ensuring technical uniformity across institutions are vital for effective interinstitutional collaboration. Although liquid biopsy technologies hold promise, they are not yet ready to replace tissue analysis. Clear communication about the risks and benefits of biopsies is essential, particularly regarding potential postoperative deficits. Changes in mindset and neurosurgical culture are imperative to achieve much needed breakthroughs in the development of new, effective therapies for brain tumours.
    DOI:  https://doi.org/10.1016/S1470-2045(24)00190-6