bims-malgli Biomed News
on Biology of malignant gliomas
Issue of 2023–07–23
fourteen papers selected by
Oltea Sampetrean, Keio University



  1. bioRxiv. 2023 Jul 03. pii: 2023.07.03.546613. [Epub ahead of print]
      Glioblastoma (GBM) represents the most aggressive subtype of glioma, noted for its profound invasiveness and molecular heterogeneity. The mesenchymal (MES) transcriptomic subtype is frequently associated with therapy resistance, rapid recurrence, and increased tumor-associated macrophages. Notably, activation of the NF-κB pathway and alterations in the PTEN gene are both associated with this malignant transition. Although PTEN aberrations have been shown to be associated with enhanced NF-κB signaling, the relationships between PTEN, NF-κB and MES transition are poorly understood in GBM. Here, we show that PTEN regulates the chromatin binding of bromodomain and extraterminal (BET) family proteins, BRD2 and BRD4, mediated by p65/RelA localization to the chromatin. By utilizing patient-derived glioblastoma stem cells and CRISPR gene editing of the RELA gene, we demonstrate a crucial role for RelA lysine 310 acetylation in recruiting BET proteins to chromatin for MES gene expression and GBM cell invasion upon PTEN loss. Remarkably, we found that BRD2 is dependent on chromatin associated acetylated RelA for its recruitment to MES gene promoters and their expression. Furthermore, loss of BRD2 results in the loss of MES signature, accompanied by an enrichment of proneural signature and enhanced therapy responsiveness. Finally, we demonstrate that disrupting the NF-κB/BRD2 interaction with a brain penetrant BET-BD2 inhibitor reduces mesenchymal gene expression, GBM invasion, and therapy resistance in GBM models. This study uncovers the role of hitherto unexplored PTEN-NF-κB-BRD2 pathway in promoting MES transition and suggests inhibiting this complex with BET-BD2 specific inhibitors as a therapeutic approach to target the MES phenotype in GBM.
    DOI:  https://doi.org/10.1101/2023.07.03.546613
  2. Cancer Discov. 2023 Jul 21. OF1
      Radiation therapy induces F3 signaling, which drives glioblastoma tumor remodeling and radioresistance.
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2023-115
  3. Neuro Oncol. 2023 Jul 20. pii: noad126. [Epub ahead of print]
       BACKGROUND: Diffuse gliomas represent over 80% of malignant brain tumors ranging from low-grade to aggressive high-grade lesions. Within IDH-mutant gliomas there is a high variability in survival and a need to more accurately predict outcome.
    METHODS: To identify and characterize a predictive signature of outcome in gliomas, we utilized an integrative molecular analysis (using methylation, mRNA, copy number variation (CNV) and mutation data), analyzing a total of 729 IDH-mutant samples including a test set of 99 from University Health Network (UHN) and two validation cohorts including the German Cancer Research Center (DKFZ) and The Cancer Genome Atlas (TCGA).
    RESULTS: Cox regression analysis of methylation data from the UHN cohort identified CpG-based signatures that split the glioma cohort into two prognostic groups strongly predicting survival that were validated using two independent cohorts from TCGA and DKFZ (all p-values<0.0001). The methylation signatures that predicted poor outcome also exhibited high CNV instability and hypermethylation of HOX gene probes. Integrated multi-platform analyses using mRNA and methylation (iRM) showed that parallel HOX gene overexpression and simultaneous hypermethylation were significantly associated with increased mutational load, high aneuploidy and worse survival (p-value<0.0001). A 7-HOX gene signature was developed and validated using the most significantly associated HOX genes with patient outcome in both 1p/19q codeleted and non-codeleted IDHmut gliomas.
    CONCLUSIONS: HOX gene methylation and expression provide important prognostic information in IDH-mutant gliomas that are not captured by current molecular diagnostics. A 7-HOX gene signature of outcome shows significant survival differences in both 1p/19q codeleted and non-codeleted IDH-mutant gliomas.
    Keywords:  HOX gene; IDH mutant gliomas; gene expression; integrated molecular analysis; methylation
    DOI:  https://doi.org/10.1093/neuonc/noad126
  4. Antioxid Redox Signal. 2023 Jul 20.
       AIMS: The goal of this study was to determine whether NADPH oxidase (NOX)-produced reactive oxygen species enhances brain tumor growth of glioblastoma (GBM) under hypoxic conditions and during radiation treatment.
    RESULTS: Exogenous ROS promoted brain tumor growth in gliomasphere cultures that expressed functional PTEN, but not in tumors that were PTEN deficient. Hypoxia induced the production of endogenous cytoplasmic ROS and tumor cell growth via activation of NOX. NOX activation resulted in oxidation of PTEN and downstream Akt activation. Radiation also promoted ROS production via NOX which, in turn, resulted in cellular protection that could be abrogated by knockdown of the key NOX component, p22. Knockdown of p22 also inhibited tumor growth and enhanced the efficacy of radiation in PTEN-expressing GBM cells.
    INNOVATION: While other studies have implicated NOX function in GBM models, these studies demonstrate NOX activation and function under physiological hypoxia and following radiation in GBM, two conditions that are seen in patients. NOX plays an important role in a PTEN-expressing GBM model system, but not in PTEN-non-functional systems and provide a potential, patient-specific therapeutic opportunity. Conclusions This study provides a strong basis for pursuing NOX inhibition in PTEN-expressing GBM cells as a possible adjunct to radiation therapy.
    DOI:  https://doi.org/10.1089/ars.2022.0086
  5. Sci Transl Med. 2023 07 19. 15(705): eadf5302
      Glioblastoma (GBM) is the most aggressive form of primary brain tumor, for which effective therapies are urgently needed. Cancer cells are capable of evading clearance by phagocytes such as microglia- and monocyte-derived cells through engaging tolerogenic programs. Here, we found that high expression of sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) correlates with reduced survival in patients with GBM. Using microglia- and monocyte-derived cell-specific knockouts of Siglec-E, the murine functional homolog of Siglec-9, together with single-cell RNA sequencing, we demonstrated that Siglec-E inhibits phagocytosis by these cells, thereby promoting immune evasion. Loss of Siglec-E on monocyte-derived cells further enhanced antigen cross-presentation and production of pro-inflammatory cytokines, which resulted in more efficient T cell priming. This bridging of innate and adaptive responses delayed tumor growth and resulted in prolonged survival in murine models of GBM. Furthermore, we showed the combinatorial activity of Siglec-E blockade and other immunotherapies demonstrating the potential for targeting Siglec-9 as a treatment for patients with GBM.
    DOI:  https://doi.org/10.1126/scitranslmed.adf5302
  6. BMC Med Genomics. 2023 Jul 15. 16(1): 168
      Cancer researchers often seek user-friendly interactive tools for validation, exploration, analysis, and visualization of molecular profiles in cancer patient samples. To aid researchers working on the both low- and high-grade gliomas, we developed Glioma-BioDP, a web tool for exploration and visualization of RNA and protein expression profiles of interest in these tumor types. Glioma-BioDP is user friendly application that include expression data from both the low- and high-grade glioma patient samples from The Cancer Genome Atlas and enabled querying by mRNA, microRNA, and protein level expression data from Illumina HiSeq and RPPA platforms respectively. Glioma-BioDP provides advance query interface and enables users to explore the association of genes, proteins, and miRNA expression with molecular and/or histological subtypes of gliomas, surgical resection status and survival. The prognostic significance and visualization of the selected expression profiles can be explored using interactive utilities provided. This tool may also enable validation and generation of new hypotheses of novel therapies impacting gliomas that aid in personalization of treatment for optimum outcomes.
    Keywords:  Brain cancer; Database; Glioma; Multi-omics
    DOI:  https://doi.org/10.1186/s12920-023-01593-w
  7. Neurooncol Adv. 2023 Jan-Dec;5(1):5(1): vdad073
       Background: IDH-wildtype glioblastoma (GBM) is a highly malignant primary brain tumor with a median survival of 15 months after standard of care, which highlights the need for improved therapy. Personalized combination therapy has shown to be successful in many other tumor types and could be beneficial for GBM patients.
    Methods: We performed the largest drug combination screen to date in GBM, using a high-throughput effort where we selected 90 drug combinations for their activity onto 25 patient-derived GBM cultures. 43 drug combinations were selected for interaction analysis based on their monotherapy efficacy and were tested in a short-term (3 days) as well as long-term (18 days) assay. Synergy was assessed using dose-equivalence and multiplicative survival metrics.
    Results: We observed a consistent synergistic interaction for 15 out of 43 drug combinations on patient-derived GBM cultures. From these combinations, 11 out of 15 drug combinations showed a longitudinal synergistic effect on GBM cultures. The highest synergies were observed in the drug combinations Lapatinib with Thapsigargin and Lapatinib with Obatoclax Mesylate, both targeting epidermal growth factor receptor and affecting the apoptosis pathway. To further elaborate on the apoptosis cascade, we investigated other, more clinically relevant, apoptosis inducers and observed a strong synergistic effect while combining Venetoclax (BCL targeting) and AZD5991 (MCL1 targeting).
    Conclusions: Overall, we have identified via a high-throughput drug screening several new treatment strategies for GBM. Moreover, an exceptionally strong synergistic interaction was discovered between kinase targeting and apoptosis induction which is suitable for further clinical evaluation as multi-targeted combination therapy.
    Keywords:  EGFR/ERBB2/BCL2/MCL1; IDH-wildtype glioblastoma (GBM); drug combination screen; multi-target therapy; synergistic drug combinations
    DOI:  https://doi.org/10.1093/noajnl/vdad073
  8. Nat Commun. 2023 Jul 20. 14(1): 4367
      The codependency of cholesterol metabolism sustains the malignant progression of glioblastoma (GBM) and effective therapeutics remain scarce. In orthotopic GBM models in male mice, we identify that codependent cholesterol metabolism in tumors induces phagocytic dysfunction in monocyte-derived tumor-associated macrophages (TAMs), resulting in disease progression. Manipulating cholesterol efflux with apolipoprotein A1 (ApoA1), a cholesterol reverse transporter, restores TAM phagocytosis and reactivates TAM-T cell antitumor immunity. Cholesterol metabolomics analysis of in vivo-sorted TAMs further reveals that ApoA1 mediates lipid-related metabolic remodeling and lowers 7-ketocholesterol levels, which directly inhibits tumor necrosis factor signaling in TAMs through mitochondrial translation inhibition. An ApoA1-armed oncolytic adenovirus is also developed, which restores antitumor immunity and elicits long-term tumor-specific immune surveillance. Our findings provide insight into the mechanisms by which cholesterol metabolism impairs antitumor immunity in GBM and offer an immunometabolic approach to target cholesterol disturbances in GBM.
    DOI:  https://doi.org/10.1038/s41467-023-39683-z
  9. Neurooncol Pract. 2023 Aug;10(4): 370-380
       Background: Recurrent gliomas are therapeutically challenging diseases with few treatment options available. One area of potential therapeutic vulnerability is the presence of targetable oncogenic fusion proteins.
    Methods: To better understand the clinical benefit of routinely testing for fusion proteins in adult glioma patients, we performed a retrospective review of 647 adult patients with glioma who underwent surgical resection at our center between August 2017 and May 2021 and whose tumors were analyzed with an in-house fusion transcript panel.
    Results: Fifty-two patients (8%) were found to harbor a potentially targetable fusion with 11 (21%) of these patients receiving treatment with a fusion-targeted inhibitor. The targetable genes found to be involved in a fusion included FGFR3, MET, EGFR, NTRK1, NTRK2, BRAF, ROS1, and PIK3CA.
    Conclusions: This analysis demonstrates that routine clinical testing for gene fusions identifies a diverse repertoire of potential therapeutic targets in adult patients with glioma and can offer rational therapeutic options for patients with recurrent disease.
    Keywords:  adult gliomas; fusion proteins; targeted therapies
    DOI:  https://doi.org/10.1093/nop/npad022
  10. bioRxiv. 2023 Jul 07. pii: 2023.07.07.548125. [Epub ahead of print]
       Background: A key feature distinguishing high-grade glioma (HGG) from low-grade glioma (LGG) is the extensive neovascularization and endothelial hyperproliferation. Prior work has shown that tumor endothelial cells (TEC) from HGG are molecularly and functionally distinct from normal brain EC and secrete higher levels of pro-tumorigenic factors that promote glioma growth and progression. However, it remains unclear whether TEC from LGG also express pro-tumorigenic factors, and to what extent they functionally contribute to glioma growth.
    Methods: Transcriptomic profiling was conducted on tumor endothelial cells (TEC) from grade II/III (LGG, IDH-mutant) and grade IV HGG (IDH-wildtype). Functional differences between LGG- and HGG-TEC were evaluated using growth assays, resistance to anti-angiogenic drugs and radiation therapy. Conditioned media and specific factors from LGG- and HGG-TEC were tested on patient-derived gliomasphere lines using growth assays in vitro and in co-transplantation studies in vivo in orthotopic xenograft models.
    Results: LGG-TEC showed enrichment of extracellular matrix and cell cycle-related gene sets and sensitivity to anti-angiogenic therapy whereas HGG-TEC displayed an increase in immune response-related gene sets and anti-angiogenic resistance. LGG- and HGG-TEC displayed opposing effects on growth and proliferation of IDH-wildtype and mutant tumor cells. Asporin (ASPN), a small leucine rich proteoglycan enriched in LGG-TEC was identified as a growth suppressor of IDH-wildtype GBM by modulating TGFΒ1-GPM6A signaling.
    Conclusions: Our findings indicate that TEC from LGG and HGG are molecularly and functionally heterogeneous and differentially regulate the growth of IDH-wildtype and mutant tumors.
    DOI:  https://doi.org/10.1101/2023.07.07.548125
  11. Nat Commun. 2023 07 17. 14(1): 4278
      Current technologies to subtype glioblastoma (GBM), the most lethal brain tumor, require highly invasive brain biopsies. Here, we develop a dedicated analytical platform to achieve direct and multiplexed profiling of circulating RNAs in extracellular vesicles for blood-based GBM characterization. The technology, termed 'enzyme ZIF-8 complexes for regenerative and catalytic digital detection of RNA' (EZ-READ), leverages an RNA-responsive transducer to regeneratively convert and catalytically enhance signals from rare RNA targets. Each transducer comprises hybrid complexes - protein enzymes encapsulated within metal organic frameworks - to configure strong catalytic activity and robust protection. Upon target RNA hybridization, the transducer activates directly to liberate catalytic complexes, in a target-recyclable manner; when partitioned within a microfluidic device, these complexes can individually catalyze strong chemifluorescence reactions for digital RNA quantification. The EZ-READ platform thus enables programmable and reliable RNA detection, across different-sized RNA subtypes (miRNA and mRNA), directly in sample lysates. When clinically evaluated, the EZ-READ platform established composite signatures for accurate blood-based GBM diagnosis and subtyping.
    DOI:  https://doi.org/10.1038/s41467-023-39844-0
  12. Nat Cancer. 2023 Jul 17.
      Neoadjuvant immune-checkpoint blockade therapy only benefits a limited fraction of patients with glioblastoma multiforme (GBM). Thus, targeting other immunomodulators on myeloid cells is an attractive therapeutic option. Here, we performed single-cell RNA sequencing and spatial transcriptomics of patients with GBM treated with neoadjuvant anti-PD-1 therapy. We identified unique monocyte-derived tumor-associated macrophage subpopulations with functional plasticity that highly expressed the immunosuppressive SIGLEC9 gene and preferentially accumulated in the nonresponders to anti-PD-1 treatment. Deletion of Siglece (murine homolog) resulted in dramatically restrained tumor development and prolonged survival in mouse models. Mechanistically, targeting Siglece directly activated both CD4+ T cells and CD8+ T cells through antigen presentation, secreted chemokines and co-stimulatory factor interactions. Furthermore, Siglece deletion synergized with anti-PD-1/PD-L1 treatment to improve antitumor efficacy. Our data demonstrated that Siglec-9 is an immune-checkpoint molecule on macrophages that can be targeted to enhance anti-PD-1/PD-L1 therapeutic efficacy for GBM treatment.
    DOI:  https://doi.org/10.1038/s43018-023-00598-9