bims-malgli Biomed News
on Biology of malignant gliomas
Issue of 2022–04–24
nine papers selected by
Oltea Sampetrean, Keio University



  1. Biomolecules. 2022 Apr 12. pii: 567. [Epub ahead of print]12(4):
      Gliomas are heterogeneous neoplasms, classified into grade I to IV according to their malignancy and the presence of specific histological/molecular hallmarks. The higher grade of glioma is known as glioblastoma (GB). Although progress has been made in surgical and radiation treatments, its clinical outcome is still unfavorable. The invasive properties of GB cells and glioma aggressiveness are linked to the reshaping of the cytoskeleton. Recent works suggest that the different susceptibility of GB cells to antitumor immune response is also associated with the extent and function of mitochondria-ER contact sites (MERCs). The presence of MERCs alterations could also explain the mitochondrial defects observed in GB models, including abnormalities of energy metabolism and disruption of apoptotic and calcium signaling. Based on this evidence, the question arises as to whether a MERCs-cytoskeleton crosstalk exists, and whether GB progression is linked to an altered cytoskeleton-MERCs interaction. To address this possibility, in this review we performed a meta-analysis to compare grade I and grade IV GB patients. From this preliminary analysis, we found that GB samples (grade IV) are characterized by altered expression of cytoskeletal and MERCs related genes. Among them, the cytoskeleton-associated protein 4 (CKAP4 or CLIMP-63) appears particularly interesting as it encodes a MERCs protein controlling the ER anchoring to microtubules (MTs). Although further in-depth analyses remain necessary, this perspective review may provide new hints to better understand GB molecular etiopathogenesis, by suggesting that cytoskeletal and MERCs alterations cooperate to exacerbate the cellular phenotype of high-grade GB and that MERCs players can be exploited as novel biomarkers/targets to enhance the current therapy for GB.
    Keywords:  MAMs; MERCs; cytoskeleton; gene expression; glioblastoma; glioblastoma invasion; glioma; microtubules; mitochondrial dynamics
    DOI:  https://doi.org/10.3390/biom12040567
  2. Nat Commun. 2022 Apr 22. 13(1): 2196
      Glioblastoma (GBM) is a deadly disease without effective treatment. Because glioblastoma stem cells (GSCs) contribute to tumor resistance and recurrence, improved treatment of GBM can be achieved by eliminating GSCs through inducing their differentiation. Prior efforts have been focused on studying GSC differentiation towards the astroglial lineage. However, regulation of GSC differentiation towards the neuronal and oligodendroglial lineages is largely unknown. To identify genes that control GSC differentiation to all three lineages, we performed an image-based genome-wide RNAi screen, in combination with single-cell RNA sequencing, and identified ZNF117 as a major regulator of GSC differentiation. Using patient-derived GSC cultures, we show that ZNF117 controls GSC differentiation towards the oligodendroglial lineage via the Notch pathway. We demonstrate that ZNF117 is a promising target for GSC differentiation therapy through targeted delivery of CRISPR/Cas9 gene-editing nanoparticles. Our study suggests a direction to improve GBM treatment through differentiation of GSCs towards various lineages.
    DOI:  https://doi.org/10.1038/s41467-022-29884-3
  3. Oncogene. 2022 Apr 22.
      CBX3, also known as HP1γ, is a major isoform of heterochromatin protein 1, whose deregulation has been reported to promote the development of human cancers. However, the molecular mechanism of CBX3 in glioblastoma multiforme (GBM) are unclear. Our study reported the identification of CBX3 as a potential therapeutic target for GBM. Briefly, we found that, CBX3 is significantly upregulated in GBM and reduces patient survival. In addition, functional assays demonstrated that CBX3 significantly promote the proliferation, invasion and tumorigenesis of GBM cells in vitro and in vivo. Mechanistically, Erlotinib, a small molecule targeting epidermal growth factor receptor (EGFR) tyrosine kinase, was used to demonstrate that CBX3 direct the malignant progression of GBM are EGFR dependent. Previous studies have shown that PARK2(Parkin) and STUB1(Carboxy Terminus of Hsp70-Interacting Protein) are EGFR-specific E3 ligases. Notably, we verified that CBX3 directly suppressed PARK2 and STUB1 at the transcriptional level through its CD domain to reduce the ubiquitination of EGFR. Moreover, the CSD domain of CBX3 interacted with PARK2 and regulated its ubiquitination to further reduce its protein level. Collectively, these results revealed an unknown mechanism underlying the pathogenesis of GBM and confirmed that CBX3 is a promising therapeutic target.
    DOI:  https://doi.org/10.1038/s41388-022-02296-9
  4. Sci Adv. 2022 Apr 22. 8(16): eabm8011
      We designed a unique nanocapsule for efficient single CRISPR-Cas9 capsuling, noninvasive brain delivery and tumor cell targeting, demonstrating an effective and safe strategy for glioblastoma gene therapy. Our CRISPR-Cas9 nanocapsules can be simply fabricated by encapsulating the single Cas9/sgRNA complex within a glutathione-sensitive polymer shell incorporating a dual-action ligand that facilitates BBB penetration, tumor cell targeting, and Cas9/sgRNA selective release. Our encapsulating nanocapsules evidenced promising glioblastoma tissue targeting that led to high PLK1 gene editing efficiency in a brain tumor (up to 38.1%) with negligible (less than 0.5%) off-target gene editing in high-risk tissues. Treatment with nanocapsules extended median survival time (68 days versus 24 days in nonfunctional sgRNA-treated mice). Our new CRISPR-Cas9 delivery system thus addresses various delivery challenges to demonstrate safe and tumor-specific delivery of gene editing Cas9 ribonucleoprotein for improved glioblastoma treatment that may potentially be therapeutically useful in other brain diseases.
    DOI:  https://doi.org/10.1126/sciadv.abm8011
  5. Oncogene. 2022 Apr 16.
      Brain tumors result in significant morbidity and mortality in both children and adults. Recent data indicate that immunotherapies may offer a survival benefit after standard of care has failed for malignant brain tumors. Modest results from several late phase clinical trials, however, underscore the need for more refined, comprehensive strategies that incorporate new mechanistic and pharmacologic knowledge. Recently, oncometabolism has emerged as an adjunct modality for combinatorial treatment approaches necessitated by the aggressive, refractory nature of high-grade glioma and other progressive malignant brain tumors. Manipulation of metabolic processes in cancer and immune cells that comprise the tumor microenvironment through controlled targeting of oncogenic pathways may be utilized to maximize the efficacy of immunotherapy and improve patient outcomes. Herein, we summarize preclinical and early phase clinical trial research of oncometabolism-based therapeutics that may augment immunotherapy by exploiting the biochemical and genetic underpinnings of brain tumors. We also examine metabolic pathways related to immune cells that target tumor cells, termed "tumor immunometabolism". Specifically, we focus on glycolysis and altered glucose metabolism, including glucose transporters, hexokinase, pyruvate dehydrogenase, and lactate dehydrogenase, glutamine, and we discuss targeting arginase, adenosine, and indoleamine 2,3-dioxygenase, and toll-like receptors. Lastly, we summarize future directions targeting metabolism in combination with emerging therapies such as oncolytic virotherapy, vaccines, and chimeric antigen receptor T cells.
    DOI:  https://doi.org/10.1038/s41388-022-02312-y
  6. Metabolites. 2022 Mar 25. pii: 290. [Epub ahead of print]12(4):
      Brain-gut axis refers to the bidirectional functional connection between the brain and the gut, which sustains vital functions for vertebrates. This connection also underlies the gastrointestinal (GI) comorbidities associated with brain disorders. Using a mouse model of glioma, based on the orthotopic injection of GL261 cell line in syngeneic C57BL6 mice, we show that late-stage glioma is associated with GI functional alteration and with a shift in the level of some bacterial metabolites in the cecum. By performing cecal content transfer experiments, we further show that cancer-associated alteration in cecal metabolites is involved in end-stage disease progression. Antibiotic treatment results in a slight but significant delay in mice death and a shift in the proportion of myeloid cells in the brain tumor environment. This work rationally considers microbiota modulating strategies in the clinical management of patients with late-stage glioma.
    Keywords:  bacterial metabolites; gut microbiota; immune environment; late-stage glioma
    DOI:  https://doi.org/10.3390/metabo12040290
  7. Nat Commun. 2022 Apr 19. 13(1): 2083
      Astroblastomas (ABs) are rare brain tumors of unknown origin. We performed an integrative genetic and epigenetic analysis of AB-like tumors. Here, we show that tumors traceable to neural stem/progenitor cells (radial glia) that emerge during early to later brain development occur in children and young adults, respectively. Tumors with MN1-BEND2 fusion appear to present exclusively in females and exhibit overexpression of genes expressed prior to 25 post-conception weeks (pcw), including genes enriched in early ventricular zone radial glia and ependymal tumors. Other, histologically classic ABs overexpress or harbor mutations of mitogen-activated protein kinase pathway genes, outer and truncated radial glia genes, and genes expressed after 25 pcw, including neuronal and astrocyte markers. Findings support that AB-like tumors arise in the context of epigenetic and genetic changes in neural progenitors. Selective gene fusion, variable imprinting and/or chromosome X-inactivation escape resulting in biallelic overexpression may contribute to female predominance of AB molecular subtypes.
    DOI:  https://doi.org/10.1038/s41467-022-29302-8