Neuro Oncol. 2021 Oct 15. pii: noab238. [Epub ahead of print]
Julia Cluceru,
Yannet Interian,
Joanna J Phillips,
Annette M Molinaro,
Tracy L Luks,
Paula Alcaide-Leon,
Marram P Olson,
Devika Nair,
Marisa LaFontaine,
Anny Shai,
Pranathi Chunduru,
Valentina Pedoia,
Javier E Villanueva-Meyer,
Susan M Chang,
Janine M Lupo.
BACKGROUND: Diagnostic classification of diffuse gliomas now requires an assessment of molecular features, often including IDH-mutation and 1p19q-codeletion status. Because genetic testing requires an invasive process, an alternative noninvasive approach is attractive, particularly if resection is not recommended. The goal of this study was to evaluate the effects of training strategy and incorporation of biologically relevant images on predicting genetic subtypes with deep learning.
METHODS: Our dataset consisted of 384 patients with newly-diagnosed gliomas who underwent preoperative MR imaging with standard anatomical and diffusion-weighted imaging, and 147 patients from an external cohort with anatomical imaging. Using tissue samples acquired during surgery, each glioma was classified into IDH-wildtype (IDHwt), IDH-mutant/1p19q-noncodeleted (IDHmut-intact), and IDH-mutant/1p19q-codeleted (IDHmut-codel) subgroups. After optimizing training parameters, top performing convolutional neural network (CNN) classifiers were trained, validated, and tested using combinations of anatomical and diffusion MRI with either a 3-class or tiered structure. Generalization to an external cohort was assessed using anatomical imaging models.
RESULTS: The best model used a 3-class CNN containing diffusion-weighted imaging as an input, achieving 85.7% (95% CI:[77.1,100]) overall test accuracy and correctly classifying 95.2%, 88.9%, 60.0% of the IDHwt, IDHmut-intact, and IDHmut-codel tumors. In general, 3-class models outperformed tiered approaches by 13.5-17.5%, and models that included diffusion-weighted imaging were 5-8.8% more accurate than those that used only anatomical imaging.
CONCLUSION: Training a classifier to predict both IDH-mutation and 1p19q-codeletion status outperformed a tiered structure that first predicted IDH-mutation, then1p19q-codeletion. Including ADC, a surrogate marker of cellularity, more accurately captured differences between subgroups.
Keywords: ADC; convolutional neural network; deep learning; diffusion-weighted imaging; glioma subtype