Alzheimers Dement. 2025 Jul;21(7): e70493
INTRODUCTION: Mucosal-associated invariant T (MAIT) cells recognize microbial antigens presented by major histocompatibility complex class I-like molecule (MR1) and are elevated in Alzheimer's disease (AD) model mouse brains; MAIT cell-deficient AD mice have reduced brain pathology, supporting the importance of the gut-brain axis in AD. How the MR1/MAIT cell axis impacts cognition and the microbiome remains unknown.
METHODS: Novel object recognition/placement, Y-maze, and Barnes maze were used to determine memory changes in wild-type (WT), MR1 KO, 5XFAD, and 5XFAD/MR1 KO mice. Fecal samples were analyzed using 16S rRNA gene amplicon sequencing.
RESULTS: 5XFAD/MR1KO mice did not display the cognitive deficits observed in 5XFAD. There were relative abundance differences in the fecal microbiota between 5XFAD and 5XFAD/MR1 KO mice, and male 5XFAD/MR1 KO mice had increased microbiome alpha diversity compared to 5XFAD mice.
DISCUSSION: Our data suggest that the MR1/MAIT cell axis negatively affects cognition and impacts gut microbiome diversity. These results further support a detrimental role for the MR1/MAIT cell axis in AD.
HIGHLIGHTS: 5XFAD mice lacking major histocompatibility complex, class I-related (MR1) and mucosal-associated invariant T (MAIT) cells had no deficits in recognition memory. Compared to 5XFAD, there was improved learning in the Barnes maze by female 5XFAD/MR1 knock-out (KO) mice. There was an increased abundance of Campylobacterota in male 5XFAD/MR1 KO versus 5XFAD mice. Six of nine linear discriminant analysis effect size-identified distinguishing features were higher in 5XFAD/MR1 KO mice.
Keywords: 5XFAD; Mucosal‐associated invariant T cells; gut–brain axis; innate immunity; major histocompatibility complex class I‐like molecule; memory; sex differences