Cell Mol Immunol. 2025 Jun 11.
Hepatocellular carcinoma (HCC) is an increasingly prevalent and deadly disease that is initiated by different etiological factors, such as alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatohepatitis (MASH), viral hepatitis, and other hepatotoxic and hepatocarcinogenic agents. The tumor microenvironment (TME) of HCC is characterized by several different fibroblastic and immune cell types, all of which affect the initiation, progression and metastasis of this malignant cancer. This complex immune TME can be divided into an innate component that includes macrophages, neutrophils, dendritic cells, myeloid-derived suppressor cells, mucosal-associated invariant T cells, natural killer cells, natural killer T cells, and innate lymphoid cells, as well as an adaptive component that includes CD4+ T cells, CD8+ T cells, regulatory T cells, and B cells. In this review, we discuss the latest findings shedding light on the direct or indirect roles of these immune cells (and fibroblastic-like cells such as hepatic stellate cells) in the pathogenesis of HCC. Henceforth, further characterization of this heterogeneous TME is highly important for studying the progression of HCC and developing novel immunotherapeutic treatment options. In line with this, we also review novel groundbreaking experimental techniques and animal models aimed at specifically elucidating this complex TME and discuss emerging immune-based therapeutic strategies intended to treat HCC and predict the efficacy of these immunotherapies.
Keywords: Hepatocellular carcinoma; Immune microenvironment; Immunotherapy.