Int Immunopharmacol. 2023 Nov 27. pii: S1567-5769(23)01603-X. [Epub ahead of print]126 111276
This study reported on the intratumor genomic and immunological heterogeneity of different tumor lesions from a single patient with multiple primary colorectal cancer (MPCC). The goal of this study was to explore the molecular and microenvironment characteristics of tumor lesions from different primary sites in a patient with MPCC. A total of three tumor lesions located in the hepatic flexure of the transverse colon, sigmoid colon, and rectum were collected from a 72-year-old male patient with MPCC. All three tumor samples were examined by using whole-exome sequencing (WES) and single-cell RNA sequencing (scRNA-seq). The transcriptome data of The Cancer Genome Atlas (TCGA) colon cancer (COAD) dataset were explored to characterize the biological impacts of certain immune cells. Only three nonsynonymous mutations were shared by all of the tumor lesions, whereas a number of single nucleotide variant (SNV) and copy number variation (CNV) mutations were shared by tumor samples from the sigmoid colon and rectum. Transcriptomic analysis showed that tumor lesions derived from the transverse colon had decreased levels of RTK, ERK, and AKT pathway activity, thus suggesting lower oncogenic properties in the transverse lesion compared to the other two samples. Further immune landscape evaluation by using single-cell transcriptomic analysis displayed significant intratumor heterogeneity in MPCC. Specifically, more abundant mucosal-associated invariant T (MAIT) cell infiltration was found in transverse colon tumor lesions. Afterwards, we found that higher MAIT cell infiltration may correlate with a better prognosis of patients with colon cancer (immunohistochemical status was MSI-L/pMMR) by using a publicly available TCGA dataset.
Keywords: Immune infiltration; Mucosal-associated invariant T cells; Multiple primary colorectal cancer; Single-cell RNA sequencing; Tumor microenvironment