bims-lysosi Biomed News
on Lysosomes and signaling
Issue of 2022‒07‒03
three papers selected by
Stephanie Fernandes
Max Planck Institute for Biology of Ageing


  1. J Biol Chem. 2022 Jun 24. pii: S0021-9258(22)00629-9. [Epub ahead of print] 102187
      Lysosome membranes contain diverse phosphoinositide (PtdIns) lipids that coordinate lysosome function and dynamics. The PtdIns repertoire on lysosomes is tightly regulated by the actions of diverse PtdIns kinases and phosphatases; however, specific roles for PtdIns in lysosomal functions and dynamics are currently unclear and require further investigation. It was previously shown that PIKfyve, a lipid kinase that synthesizes PtdIns(3,5)P2 from PtdIns(3)P, controls lysosome "fusion-fission" cycle dynamics, autophagosome turnover, and endocytic cargo delivery. Furthermore, INPP4B, a PtdIns 4-phosphatase that hydrolyzes PtdIns(3,4)P2 to form PtdIns(3)P, is emerging as a cancer-associated protein with roles in lysosomal biogenesis and other lysosomal functions. Here, we investigated the consequences of disrupting PIKfyve function in Inpp4b-deficient mouse embryonic fibroblasts. Through confocal fluorescence imaging, we observed the formation of massively enlarged lysosomes, accompanied by exacerbated reduction of endocytic trafficking, disrupted lysosome fusion-fission dynamics, and inhibition of autophagy. Finally, HPLC scintillation quantification of 3H-myo-inositol labelled phosphoinositides and phosphoinositide immunofluorescence staining, we observed that lysosomal PtdIns(3)P levels were significantly elevated in Inpp4b-deficient cells due to the hyperactivation of phosphatidylinositol 3-kinase catalytic subunit VPS34 enzymatic activity. In conclusion, our study identifies a novel signaling axis that maintains normal lysosomal homeostasis and dynamics, which includes the catalytic functions of Inpp4b, PIKfyve, and VPS34.
    Keywords:  Apilimod; Inpp4b; Lysosomes; PIKfyve; PtdIns(3)P; Vps34
    DOI:  https://doi.org/10.1016/j.jbc.2022.102187
  2. Contact (Thousand Oaks). 2022 Jan;5 251525642210970
      Lysosomes serve as cellular degradation and signaling centers that coordinate the turnover of macromolecules with cell metabolism. The adaptation of cellular lysosome content and activity via the induction of lysosome biogenesis is therefore key to cell physiology and to counteract disease. Previous work has established a pathway for the induction of lysosome biogenesis in signaling-inactive starved cells that is based on the repression of mTORC1-mediated nutrient signaling. How lysosomal biogenesis is facilitated in signaling-active fed cells is poorly understood. A recent study by Malek et al (Malek et al, 2022) partially fills this gap by unraveling a nutrient signaling-independent pathway for lysosome biogenesis that operates in signaling-active cells. This pathway involves the receptor-mediated activation of phospholipase C, inositol (1,4,5)-triphosphate (IP3)-triggered release of calcium ions from endoplasmic reticulum stores, and the calcineurin-induced activation of transcription factor EB (TFEB) and its relative TFE3 to induce lysosomal gene expression independent of calcium in the lysosome lumen. These findings contribute to our understanding of how lysosome biogenesis and function are controlled in response to environmental changes and cell signaling and may conceivably be of relevance for our understanding and the treatment of lysosome-related diseases as well as for aging and neurodegeneration.
    Keywords:  calcium; inositol (1,4,5)-triphosphate; lysosome; nutrient signaling; phospholipase C
    DOI:  https://doi.org/10.1177/25152564221097052
  3. Mol Cell. 2022 Jun 24. pii: S1097-2765(22)00544-5. [Epub ahead of print]
      Bicarbonate (HCO3-) ions maintain pH homeostasis in eukaryotic cells and serve as a carbonyl donor to support cellular metabolism. However, whether the abundance of HCO3- is regulated or harnessed to promote cell growth is unknown. The mechanistic target of rapamycin complex 1 (mTORC1) adjusts cellular metabolism to support biomass production and cell growth. We find that mTORC1 stimulates the intracellular transport of HCO3- to promote nucleotide synthesis through the selective translational regulation of the sodium bicarbonate cotransporter SLC4A7. Downstream of mTORC1, SLC4A7 mRNA translation required the S6K-dependent phosphorylation of the translation factor eIF4B. In mTORC1-driven cells, loss of SLC4A7 resulted in reduced cell and tumor growth and decreased flux through de novo purine and pyrimidine synthesis in human cells and tumors without altering the intracellular pH. Thus, mTORC1 signaling, through the control of SLC4A7 expression, harnesses environmental bicarbonate to promote anabolic metabolism, cell biomass, and growth.
    Keywords:  SLC4A7/NBCn1; bicarbonate metabolism; mTOR signaling; purine metabolism; pyrimidine metabolism
    DOI:  https://doi.org/10.1016/j.molcel.2022.06.008