bims-lysosi Biomed News
on Lysosomes and signaling
Issue of 2022–06–19
thirty-one papers selected by
Stephanie Fernandes, Max Planck Institute for Biology of Ageing



  1. J Biol Chem. 2022 Jun 09. pii: S0021-9258(22)00559-2. [Epub ahead of print] 102118
      Sphingolipids are a class of bioactive complex lipids that have been closely associated with aging and aging-related diseases. However, the mechanism through which sphingolipids control aging has long been a mystery. Emerging studies reveal that sphingolipids exert tight control over lysosomal homeostasis and function, as evidenced by sphingolipid-related diseases, including but not limited to lysosomal storage disorders. These diseases are defined by primary lysosomal defects and a few secondary defects such as mitochondrial dysfunction. Intriguingly, recent research indicates that the majority of these defects are also associated with aging, implying that sphingolipid-related diseases and aging may share common mechanisms. We propose that the lysosome is a pivotal hub for sphingolipid-mediated aging regulation. This review discusses the critical roles of sphingolipid metabolism in regulating various lysosomal functions, with an emphasis on how such regulation may contribute to aging and aging-related diseases.
    Keywords:  aging; lifespan; lysosomal calcium; lysosomal cell death; lysosome; lysosome-mitochondria communication; mTOR; sphingolipid
    DOI:  https://doi.org/10.1016/j.jbc.2022.102118
  2. Cell Rep. 2022 Jun 14. pii: S2211-1247(22)00725-2. [Epub ahead of print]39(11): 110943
      The suppressive function of regulatory T (Treg) cells is tightly controlled by nutrient-fueled mechanistic target of rapamycin complex 1 (mTORC1) activation, yet its dynamics and negative regulation remain unclear. Here we show that Treg-specific depletion of vacuolar protein sorting 33B (Vps33B) in mice results in defective Treg cell suppressive function and acquisition of effector phenotype, which in turn leads to disturbed T cell homeostasis and boosted antitumor immunity. Mechanistically, Vps33B binds with lysosomal nutrient-sensing complex (LYNUS) and promotes late endosome and lysosome fusion and clearance of the LYNUS-containing late endosome/lysosome, and therefore suppresses mTORC1 activation. Vps33B deficiency in Treg cells results in disordered endosome lysosome fusion, which leads to accumulation of LYNUS that causes elevated mTORC1 activation and hyper-glycolytic metabolism. Taken together, our study reveals that Vps33B maintains Treg cell suppressive function through sustaining endolysosomal homeostasis and therefore restricting amino acid-licensed mTORC1 activation and metabolism.
    Keywords:  CP: Immunology; CP: Metabolism; Foxp3; Treg; Vps33B; endolysosomal system; mTORC1
    DOI:  https://doi.org/10.1016/j.celrep.2022.110943
  3. Front Neurosci. 2022 ;16 834780
      Batten disease is unique among lysosomal storage disorders for the early and profound manifestation in the central nervous system, but little is known regarding potential neuron-specific roles for the disease-associated proteins. We demonstrate substantial overlap in the protein interactomes of three transmembrane Batten proteins (CLN3, CLN6, and CLN8), and that their absence leads to synaptic depletion of key partners (i.e., SNAREs and tethers) and altered synaptic SNARE complexing in vivo, demonstrating a novel shared etiology.
    Keywords:  Batten disease; SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor); lysosome; neurodegeneration; vesicle traffic
    DOI:  https://doi.org/10.3389/fnins.2022.834780
  4. GEN Biotechnol. 2022 Apr;1(2): 156-162
      With the increasing interest in developing gene therapies for rare diseases, it is easy to overlook that there are numerous rare lysosomal storage diseases (LSD) with treatments that have been approved by regulatory agencies in the United States and Europe. These primarily consist of enzyme replacement therapies (ERT), which are recombinant human proteins that are delivered for the life of the patient via different routes and may have distinct safety and distribution advantages over gene therapies. The research and development of ERT is a lengthy and expensive process, which is usually performed in academic laboratories before transfer to pharmaceutical companies and is hence a process ripe for disruption. There may still be considerable scientific and investment potential for ERT, however we need to develop a pipeline of proteins analogous to what has been created in some open science efforts as well as apply technologies to decrease manufacturing costs. In this Perspective, we illustrate the opportunity to fill the rare LSD treatment gap with ERTs while gene therapies are in development for these life-shortening diseases.
    Keywords:  enzyme replacement therapy; lysosomal storage diseases; lysosomes; pipeline; rare diseases
    DOI:  https://doi.org/10.1089/genbio.2021.0013
  5. Gene. 2022 Jun 14. pii: S0378-1119(22)00486-3. [Epub ahead of print] 146667
      Neu1 is a lysosomal glycosidase that catalyzes the removal of sialic acids from glycoconjugates. Although Neu1 sialidase is highly conserved among vertebrates, the role of fish Neu1 is not fully understood because of its unique aquatic living situation. Compared to land animals, fish have a higher chance of bacterial infection, and to understand the role of fish Neu1, the susceptibility of Neu1 knockout zebrafish (Neu1-KO) was evaluated using Edwardsiella piscicida, a fish pathogen. Neu1-KO larvae showed high susceptibility to E. piscicida, despite the activation of macrophages, and presented increased lysosomal signals induced by the accumulation of Sia α2-3 linked oligosaccharides. The accumulation coincided with the signal of the macrophage marker, suggesting that the dysfunction of lysosomes in macrophages would result in a high susceptibility of Neu1-KO to E. piscicida. Chloroquine, an inhibitor of lysosomal degradation, induced high mortality of wild type zebrafish with E. piscicida infection accompanied by increased lysosomal accumulation, similar to Neu1-KO zebrafish. This study revealed that Neu1 sialidase plays a crucial role in the lysosomal degradation of macrophages with a bacterial infection.
    Keywords:  lysosome; oligosaccharide; sialic acid; sialidase; zebrafish
    DOI:  https://doi.org/10.1016/j.gene.2022.146667
  6. Front Cell Neurosci. 2022 ;16 828071
      Perturbations in endo-lysosomal trafficking pathways are linked to many neurodevelopmental and neurodegenerative diseases. Of relevance to our current study, MAPK8IP3/JIP3, a brain enriched putative adaptor between lysosomes and motors has been previously implicated as a key regulator of axonal lysosome transport. Since de novo variants in MAPK8IP3 have recently been linked to a neurodevelopmental disorder with intellectual disability, there is a need to better understand the functioning of this protein in human neurons. To this end, using induced neurons (i3Neurons) derived from human iPSCs lacking MAPK8IP3, we demonstrate that loss of hMAPK8IP3 affects endocytic uptake in neurons but does not affect the proteolytic activity of lysosomes in neuronal cell bodies. Our findings indicate that MAPK8IP3 may be a regulator of bulk endocytosis in neurons and that altered endocytic uptake may play a role in MAPK8IP3-linked neurodevelopmental disorders.
    Keywords:  DQ-Red BSA; JIP3; MAPK8IP3; endocytosis; iPSC; lysosome; neurodevelopment; neuron
    DOI:  https://doi.org/10.3389/fncel.2022.828071
  7. Exp Cell Res. 2022 Jun 10. pii: S0014-4827(22)00239-7. [Epub ahead of print] 113246
      Mechanistic target of rapamycin complex 1 (mTORC1) phosphorylates and inhibits eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1). This leads to the release of eIF4E from 4E-BP1 and the initiation of eIF4E-dependent mRNA translation. In this study, we examined the expression of a 4E-BP1-based reporter (mTORC1 activity reporter; TORCAR) with various localization signal tags to clarify the relationship between the localization of 4E-BP1 and its phosphorylation. Phosphorylation of 4E-BP1 at threonine 37/46 and serine 65 was efficient at lysosomes and the plasma membrane, whereas it was significantly decreased in the nucleus. In addition, the localization of endogenous eIF4E shifted from the cytoplasm to the nucleus only when nuclear-localized TORCAR was expressed. Nuclear-localized TORCAR decreased cyclin D1 protein levels and altered cell cycle distribution. These data provide an experimental tool to manipulate the localization of endogenous eIF4E without affecting mTORC1 and highlight the important role of nuclear-cytoplasmic shuttling of eIF4E.
    Keywords:  4E-BP1; NLS; TORCAR; Translation; eIF4E
    DOI:  https://doi.org/10.1016/j.yexcr.2022.113246
  8. STAR Protoc. 2022 Jun 17. 3(2): 101453
      Intracellular vesicles such as lysosomes contain micromolar to millimolar concentrations of Zn2+, and disturbing lysosomal Zn2+ homeostasis via lysosomal Zn2+ release leads to mitochondria damage and consequent lytic cell death. Methods have been developed to image cellular Zn2+ dynamics. Here, we present a protocol using GZnP3, a genetically encoded fluorescent Zn2+ indicator, to assess lysosomal Zn2+ release in cultured cells by fluorescence microscopy imaging. For complete details on the use and execution of this protocol, please refer to Du et al. (2021) or Minckley et al. (2019).
    Keywords:  Cell culture; Microscopy; Molecular/Chemical Probes
    DOI:  https://doi.org/10.1016/j.xpro.2022.101453
  9. Sci Rep. 2022 Jun 16. 12(1): 10142
      Mucopolysaccharidosis IX is a lysosomal storage disorder caused by a deficiency in HYAL1, an enzyme that degrades hyaluronic acid at acidic pH. This disease causes juvenile arthritis in humans and osteoarthritis in the Hyal1 knockout mouse model. Our past research revealed that HYAL1 is strikingly upregulated (~ 25x) upon differentiation of bone marrow monocytes into osteoclasts. To investigate whether HYAL1 is involved in the differentiation and/or resorption activity of osteoclasts, and in bone remodeling in general, we analyzed several bone parameters in Hyal1 -/- mice and studied the differentiation and activity of their osteoclasts and osteoblasts when differentiated in vitro. These experiments revealed that, upon aging, HYAL1 deficient mice exhibit reduced femur length and a ~ 15% decrease in bone mineral density compared to wild-type mice. We found elevated osteoclast numbers in the femurs of these mice as well as an increase of the bone resorbing activity of Hyal1 -/- osteoclasts. Moreover, we detected decreased mineralization by Hyal1 -/- osteoblasts. Taken together with the observed accumulation of hyaluronic acid in Hyal1 -/- bones, these results support the premise that the catabolism of hyaluronic acid by osteoclasts and osteoblasts is an intrinsic part of bone remodeling.
    DOI:  https://doi.org/10.1038/s41598-022-14473-7
  10. Mol Biol Cell. 2022 Jun 15. mbcE21100505
      We report on how the ER-associated-autophagy pathway (ERAA) delivers P23H-rhodopsin (P23H-R) to the lysosome. P23H-R accumulates in an ERAD-resistant conformation that is stabilized in a detergent-soluble state by DNAJB12 and Hsp70. P23H-R, DNAJB12, and FIP200 colocalize in discrete foci that punctuate the rim of omegasome rings coated by WIPI1. Loss of DNAJB12 function prevents the association of P23H-R containing ER-tubules with omegasomes. P23H-R tubules thread through the wall of WIPI1 rings into their central cavity. Transfer of P23H-R from ER-connected phagophores to lysosomes requires GABARAP, and is associated with the transient docking of lysosomes to WIPI1 rings. After departure from WIPI1 rings, new patches of P23H-R are seen in the membranes of lysosomes. The absence of GABARAP prevents transfer of P23H-R from phagophores to lysosomes without interfering with docking. These data identify lysosome docking to omegasomes as an important step in the DNAJB12 and GABARAP-dependent autophagic disposal of dominantly toxic P23H-R.
    DOI:  https://doi.org/10.1091/mbc.E21-10-0505
  11. Front Cell Neurosci. 2022 ;16 917884
      Neuraminidase 1 (Neu1) hydrolyses terminal sialic acid residues from glycoproteins and glycolipids, and is normally located in lysosomes, but can be released onto the surface of activated myeloid cells and microglia. We report that endotoxin/lipopolysaccharide-activated microglia released Neu1 into culture medium, and knockdown of Neu1 in microglia reduced both Neu1 protein and neuraminidase activity in the culture medium. Release of Neu1 was reduced by inhibitors of lysosomal exocytosis, and accompanied by other lysosomal proteins, including protective protein/cathepsin A, known to keep Neu1 active. Extracellular neuraminidase or over-expression of Neu1 increased microglial phagocytosis, while knockdown of Neu1 decreased phagocytosis. Microglial activation caused desialylation of microglial phagocytic receptors Trem2 and MerTK, and increased binding to Trem2 ligand galectin-3. Culture media from activated microglia contained Neu1, and when incubated with neurons induced their desialylation, and increased the neuronal death induced by low levels of glutamate. Direct desialylation of neurons by adding sialidase or inhibiting sialyltransferases also increased glutamate-induced neuronal death. We conclude that activated microglia can release active Neu1, possibly by lysosomal exocytosis, and this can both increase microglial phagocytosis and sensitize neurons to glutamate, thus potentiating neuronal death.
    Keywords:  desialylation; excitotoxicity; microglia; neuraminidase 1; neurodegeneration; neuroinflammation; neurotoxicity; sialic acid
    DOI:  https://doi.org/10.3389/fncel.2022.917884
  12. Arterioscler Thromb Vasc Biol. 2022 Jun 16. 101161ATVBAHA122317559
       BACKGROUND: Secretory granules are key elements for platelet functions. Their biogenesis and integrity are regulated by fine-tuned mechanisms that need to be fully characterized. Here, we investigated the role of the phosphoinositide 5-kinase PIKfyve and its lipid products, PtdIns5P (phosphatidylinositol 5 monophosphate) and PtdIns(3,5)P2 (phosphatidylinositol (3,5) bisphosphate) in granule homeostasis in megakaryocytes and platelets.
    METHODS: For that, we invalidated PIKfyve by pharmacological inhibition or gene silencing in megakaryocytic cell models (human MEG-01 cell line, human imMKCLs, mouse primary megakaryocytes) and in human platelets.
    RESULTS: We unveiled that PIKfyve expression and its lipid product levels increased with megakaryocytic maturation. In megakaryocytes, PtdIns5P and PtdIns(3,5)P2 were found in alpha and dense granule membranes with higher levels in dense granules. Pharmacological inhibition or knock-down of PIKfyve in megakaryocytes decreased PtdIns5P and PtdIns(3,5)P2 synthesis and induced a vacuolar phenotype with a loss of alpha and dense granule identity. Permeant PtdIns5P and PtdIns(3,5)P2 and the cation channel TRPML1 (transient receptor potential mucolipins) and TPC2 activation were able to accelerate alpha and dense granule integrity recovery following release of PIKfyve pharmacological inhibition. In platelets, PIKfyve inhibition specifically impaired the integrity of dense granules culminating in defects in their secretion, platelet aggregation, and thrombus formation.
    CONCLUSIONS: These data demonstrated that PIKfyve and its lipid products PtdIns5P and PtdIns(3,5)P2 control granule integrity both in megakaryocytes and platelets.
    Keywords:  blood platelets; granules; homeostasis; megakaryocytes; phosphoinositides
    DOI:  https://doi.org/10.1161/ATVBAHA.122.317559
  13. Mol Brain. 2022 Jun 17. 15(1): 56
      Hippocampal CA1 parvalbumin-expressing interneurons (PV INs) play a central role in controlling principal cell activity and orchestrating network oscillations. PV INs receive excitatory inputs from CA3 Schaffer collaterals and local CA1 pyramidal cells, and they provide perisomatic inhibition. Schaffer collateral excitatory synapses onto PV INs express Hebbian and anti-Hebbian types of long-term potentiation (LTP), as well as elicit LTP of intrinsic excitability (LTPIE). LTPIE requires the activation of type 5 metabotropic glutamate receptors (mGluR5) and is mediated by downregulation of potassium channels Kv1.1. It is sensitive to rapamycin and thus may involve activation of the mammalian target of rapamycin complex 1 (mTORC1). LTPIE facilitates PV INs recruitment in CA1 and maintains an excitatory-inhibitory balance. Impaired CA1 PV INs activity or LTP affects network oscillations and memory. However, whether LTPIE in PV INs plays a role in hippocampus-dependent memory remains unknown. Here, we used conditional deletion of the obligatory component of mTORC1, the Regulatory-Associated Protein of mTOR (Raptor), to directly manipulate mTORC1 in PV INs. We found that homozygous, but not heterozygous, conditional knock-out of Rptor resulted in a decrease in CA1 PV INs of mTORC1 signaling via its downstream effector S6 phosphorylation assessed by immunofluorescence. In whole-cell recordings from hippocampal slices, repetitive firing of CA1 PV INs was impaired in mice with either homozygous or heterozygous conditional knock-out of Rptor. High frequency stimulation of Schaffer collateral inputs that induce LTPIE in PV INs of control mice failed to do so in mice with either heterozygous or homozygous conditional knock-out of Rptor in PV INs. At the behavioral level, mice with homozygous or heterozygous conditional knock-out of Rptor showed similar long-term contextual fear memory or contextual fear memory discrimination relative to control mice. Thus, mTORC1 activity in CA1 PV INs regulates repetitive firing and LTPIE but not consolidation of long-term contextual fear memory and context discrimination. Our results indicate that mTORC1 plays cell-specific roles in synaptic plasticity of hippocampal inhibitory interneurons that are differentially involved in hippocampus-dependent learning and memory.
    Keywords:  CA1 hippocampus; Contextual fear conditioning; GABA interneurons; Raptor conditional knock-out mice; Whole-cell recordings
    DOI:  https://doi.org/10.1186/s13041-022-00941-8
  14. Am J Physiol Cell Physiol. 2022 Jun 15.
      Atrogin-1 and MuRF1 are highly expressed in multiple conditions of skeletal muscle atrophy. The PI3K/Akt/FoxO signaling pathway is well known to regulate Atrogin-1 and MuRF1 gene expressions. However, Akt activation also activates the mammalian target of rapamycin complex 1 (mTORC1) which induces skeletal muscle hypertrophy. Whether mTORC1-dependent signaling has a role in regulating Atrogin-1 and/or MuRF1 gene and protein expression is currently unclear. In this study, we showed that activation of insulin-mediated Akt signaling suppresses both Atrogin-1 and MuRF1 protein contents and that inhibition of Akt increases both Atrogin-1 and MuRF1 protein contents in C2C12 myotubes. Interestingly, inhibition of mTORC1 using a specific mTORC1 inhibitor, rapamycin, increased Atrogin-1, but not MuRF1, protein content. Furthermore, activation of AMP-activated protein kinase (AMPK), a negative regulator of the mTORC1 signaling pathway, also showed distinct time-dependent changes between Atrogin-1 and MuRF1 protein contents, suggesting differential regulatory mechanisms between Atrogin-1 and MuRF1 protein content. To further explore the downstream of mTORC1 signaling, we employed a specific S6K1 inhibitor, PF-4708671. We found that Atrogin-1 protein content was dose-dependently increased with PF-4708671 treatment, whereas MuRF1 protein content was decreased at 50 μM of PF-4708671 treatment. However, MuRF1 protein content was unexpectedly increased when treated with PF-4708671 for a longer period. Overall, our results indicate that Atrogin-1 and MuRF1 protein contents are regulated by different mechanisms, the downstream of Akt, and that Atrogin-1 protein content can be regulated by rapamycin-sensitive mTOR-S6K1 dependent signaling pathway.
    Keywords:  Skeletal muscle; The ubiquitin proteasome system; mTORC1
    DOI:  https://doi.org/10.1152/ajpcell.00384.2021
  15. Front Genet. 2022 ;13 892457
      Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the GBA1 gene, which produces the glucocerebrosidase (GCase) protein. There are more than 500 mutations reported in GBA1, among which L444P (p.Leu444Pro) and F213I (p.Phe213Ile) are the most common in the Chinese population, while the function of F213I mutation remains elusive. This study aims to establish the GD mouse model of partially humanized Gba1 gene with F213I mutation. In vitro GCase activity assays showed that the product of partially humanized Gba1 gene, in which the mouse exons 5-7 were replace by the corresponding human exons, displayed similar activity with the wild-type mouse Gba1, while the F213I mutation in the humanized Gba1 led to significant decrease in enzyme activity. ES cell targeting was used to establish the mice expressing the partially humanized Gba1-F213I. Gba1 F213I/+ mice did not show obviously abnormal phenotypes, but homozygous Gba1 F213I/F213I mice died within 24 h after birth, whose epidermal stratum corneum were abnormal from the wild-type. The GCase activity in Gba1 F213I/F213I mice greatly decreased. In conclusion, our results showed that the partially humanized GD mouse model with the F213I mutation was developed and homozygous F213I mutation is lethal for newborn mice.
    Keywords:  F213I mutation; GBA1 gene; GD mouse model; Gaucher disease; partially humanized
    DOI:  https://doi.org/10.3389/fgene.2022.892457
  16. FASEB J. 2022 07;36(7): e22396
      Dietary removal of an essential amino acid (EAA) triggers the integrated stress response (ISR) in liver. Herein, we explored the mechanisms that activate the ISR and execute changes in transcription and translation according to the missing EAA. Wild-type mice and mice lacking general control nonderepressible 2 (Gcn2) were fed an amino acid complete diet or a diet devoid of either leucine or sulfur amino acids (methionine and cysteine). Serum and liver leucine concentrations were significantly reduced within the first 6 h of feeding a diet lacking leucine, corresponding with modest, GCN2-dependent increases in Atf4 mRNA translation and induction of selected ISR target genes (Fgf21, Slc7a5, Slc7a11). In contrast, dietary removal of the sulfur amino acids lowered serum methionine, but not intracellular methionine, and yet hepatic mRNA abundance of Atf4, Fgf21, Slc7a5, Slc7a11 substantially increased regardless of GCN2 status. Liver tRNA charging levels did not correlate with intracellular EAA concentrations or GCN2 status and remained similar to mice fed a complete diet. Furthermore, loss of Gcn2 increased the occurrence of ribosome collisions in liver and derepressed mechanistic target of rapamycin complex 1 signal transduction, but these changes did not influence execution of the ISR. We conclude that ISR activation is directed by intracellular EAA concentrations, but ISR execution is not. Furthermore, a diet devoid of sulfur amino acids does not require GCN2 for the ISR to execute changes to the transcriptome.
    Keywords:  dietary restriction; feeding; mammalian; polysomes; postprandial period; protein synthesis
    DOI:  https://doi.org/10.1096/fj.202200204RR
  17. Am J Physiol Renal Physiol. 2022 Jun 13.
      The lysosomal storage disease cystinosis is caused by mutations in CTNS, encoding a cystine transporter, and in its severest form leads to proximal tubule dysfunction followed by kidney failure. Patients receive the drug-based therapy cysteamine from diagnosis. However, despite long-term treatment, cysteamine only slows the progression of end-stage renal disease. Pre-clinical testing in cystinotic rodents is required to evaluate new therapies; however, the current models are sub-optimal. To solve this problem we generated a new cystinotic rat model using CRISPR/Cas9-mediated gene editing to disrupt exon 3 of Ctns and measured various parameters over a 12-month time-course. Ctns-/- rats display hallmarks of cystinosis by 3-6 months of age as seen by a failure to thrive, excessive thirst and urination, cystine accumulation in tissues, corneal cystine crystals, a loss of Lrp2 in proximal tubules and immune cell infiltration. High levels of glucose, calcium, albumin and protein are excreted at 6-months of age, consistent with the onset of Fanconi syndrome, with a progressive diminution of urine urea and creatinine from 9-months of age, indicative of chronic kidney disease. The kidney histology and immunohistochemistry showed proximal tubule atrophy and glomerular damage as well as classic 'swan neck' lesions. Overall, Ctns-/- rats show a disease progression that more faithfully recapitulates nephropathic cystinosis than existing rodent models. The Ctns-/- rat provides an excellent new rodent model of nephropathic cystinosis that is ideally suited for conducting pre-clinical drug testing and a powerful tool to advance cystinosis research.
    Keywords:  Chronic kidney disease; Cystinosis; Fanconi syndrome
    DOI:  https://doi.org/10.1152/ajprenal.00277.2021
  18. J Exp Bot. 2022 Jun 17. pii: erac264. [Epub ahead of print]
      Microalgae constitute a highly diverse group of photosynthetic microorganisms that are widely distributed on Earth. The rich diversity of microalgae arose from endosymbiotic events that took place early in the evolution of eukaryotes and gave rise to multiple lineages including green algae, the ancestors of land plants. In addition to their fundamental role as the primary source of marine and freshwater food chains, microalgae are essential producers of oxygen in the planet and a major biotechnological target for sustainable biofuel production and CO2 mitigation. Microalgae integrate light and nutrient signals to regulate cell growth. Recent studies identified the target of rapamycin (TOR) kinase as central regulator of cell growth and nutrient sensor in microalgae. TOR promotes protein synthesis and regulates processes that are induced under nutrient stress such as autophagy and the accumulation of triacylglycerol and starch. A detailed analysis of representative genomes from the entire microalgal lineage revealed the high conservation of central components of the TOR pathway likely present in the last eukaryotic common ancestor and the loss of specific TOR signaling elements at an early stage in the evolution of microalgae. Here we examine the evolutionary conservation of TOR signaling components in diverse microalgae and discuss recent progress on the study of this signaling pathway in these organisms.
    Keywords:  Chlamydomonas; Microalgae; TOR kinase; nutrient; red algae
    DOI:  https://doi.org/10.1093/jxb/erac264
  19. PLoS One. 2022 ;17(6): e0269951
      In addition to laser photocoagulation, therapeutic interventions for diabetic retinopathy (DR) have heretofore consisted of anti-VEGF drugs, which, besides drawbacks inherent to the treatments themselves, are limited in scope and may not fully address the condition's complex pathophysiology. This is because DR is a multifactorial condition, meaning a gene therapy focused on a target with broader effects, such as the mechanistic target of rapamycin (mTOR), may prove to be the solution in overcoming these concerns. Having previously demonstrated the potential of a mTOR-inhibiting shRNA packaged in a recombinant adeno-associated virus to address a variety of angiogenic retinal diseases, here we explore the effects of rAAV2-shmTOR-SD in a streptozotocin-induced diabetic mouse model. Delivered via intravitreal injection, the therapeutic efficacy of the virus vector upon early DR processes was examined. rAAV2-shmTOR-SD effectively transduced mouse retinas and therein downregulated mTOR expression, which was elevated in sham-treated and control shRNA-injected (rAAV2-shCon-SD) control groups. mTOR inhibition additionally led to marked reductions in pericyte loss, acellular capillary formation, vascular permeability, and retinal cell layer thinning, processes that contribute to DR progression. Immunohistochemistry showed that rAAV2-shmTOR-SD decreased ganglion cell loss and pathogenic Müller cell activation and proliferation, while also having anti-apoptotic activity, with these effects suggesting the therapeutic virus vector may be neuroprotective. Taken together, these results build upon our previous work to demonstrate the broad ability of rAAV2-shmTOR-SD to address aspects of DR pathophysiology further evidencing its potential as a human gene therapeutic strategy for DR.
    DOI:  https://doi.org/10.1371/journal.pone.0269951
  20. Pharmacol Rev. 2022 Jul;74(3): 600-629
      Cathepsin B (CTSB) is a powerful lysosomal protease. This review evaluated CTSB gene knockout (KO) outcomes for amelioration of brain dysfunctions in neurologic diseases and aging animal models. Deletion of the CTSB gene resulted in significant improvements in behavioral deficits, neuropathology, and/or biomarkers in traumatic brain injury, ischemia, inflammatory pain, opiate tolerance, epilepsy, aging, transgenic Alzheimer's disease (AD), and periodontitis AD models as shown in 12 studies. One study found beneficial effects for double CTSB and cathepsin S KO mice in a multiple sclerosis model. Transgenic AD models using amyloid precursor protein (APP) mimicking common sporadic AD in three studies showed that CTSB KO improved memory, neuropathology, and biomarkers; two studies used APP representing rare familial AD and found no CTSB KO effect, and two studies used highly engineered APP constructs and reported slight increases in a biomarker. In clinical studies, all reports found that CTSB enzyme was upregulated in diverse neurologic disorders, including AD in which elevated CTSB was positively correlated with cognitive dysfunction. In a wide range of neurologic animal models, CTSB was also upregulated and not downregulated. Further, human genetic mutation data provided precedence for CTSB upregulation causing disease. Thus, the consilience of data is that CTSB gene KO results in improved brain dysfunction and reduced pathology through blockade of CTSB enzyme upregulation that causes human neurologic disease phenotypes. The overall findings provide strong support for CTSB as a rational drug target and for CTSB inhibitors as therapeutic candidates for a wide range of neurologic disorders. SIGNIFICANCE STATEMENT: This review provides a comprehensive compilation of the extensive data on the effects of deleting the cathepsin B (CTSB) gene in neurological and aging mouse models of brain disorders. Mice lacking the CTSB gene display improved neurobehavioral deficits, reduced neuropathology, and amelioration of neuronal cell death and inflammatory biomarkers. The significance of the compelling CTSB evidence is that the data consilience validates CTSB as a drug target for discovery of CTSB inhibitors as potential therapeutics for treating numerous neurological diseases.
    DOI:  https://doi.org/10.1124/pharmrev.121.000527
  21. Skelet Muscle. 2022 Jun 11. 12(1): 13
       BACKGROUND: Aging decreases skeletal muscle mass and quality. Maintenance of healthy muscle is regulated by a balance between protein and organellar synthesis and their degradation. The autophagy-lysosome system is responsible for the selective degradation of protein aggregates and organelles, such as mitochondria (i.e., mitophagy). Little data exist on the independent and combined influence of age, biological sex, and exercise on the autophagy system and lysosome biogenesis. The purpose of this study was to characterize sex differences in autophagy and lysosome biogenesis in young and aged muscle and to determine if acute exercise influences these processes.
    METHODS: Young (4-6 months) and aged (22-24 months) male and female mice were assigned to a sedentary or an acute exercise group. Mitochondrial content, the autophagy-lysosome system, and mitophagy were measured via protein analysis. A TFEB-promoter-construct was utilized to examine Tfeb transcription, and nuclear-cytosolic fractions allowed us to examine TFEB localization in sedentary and exercised muscle with age and sex.
    RESULTS: Our results indicate that female mice, both young and old, had more mitochondrial protein than age-matched males. However, mitochondria in the muscle of females had a reduced respiratory capacity. Mitochondrial content was only reduced with age in the male cohort. Young female mice had a greater abundance of autophagy, mitophagy, and lysosome proteins than young males; however, increases were evident with age irrespective of sex. Young sedentary female mice had indices of greater autophagosomal turnover than male counterparts. Exhaustive exercise was able to stimulate autophagic clearance solely in young male mice. Similarly, nuclear TFEB protein was enhanced to a greater extent in young male, compared to young female mice following exercise, but no changes were observed in aged mice. Finally, TFEB-promoter activity was upregulated following exercise in both young and aged muscle.
    CONCLUSIONS: The present study demonstrates that biological sex influences mitochondrial homeostasis, the autophagy-lysosome system, and mitophagy in skeletal muscle with age. Furthermore, our data suggest that young male mice have a more profound ability to activate these processes with exercise than in the other groups. Ultimately, this may contribute to a greater remodeling of muscle in response to exercise training in males.
    Keywords:  Aging; Autophagy; Lysosomes; Mitophagy; Muscle; Sex differences; TFEB
    DOI:  https://doi.org/10.1186/s13395-022-00296-7
  22. Cell Death Dis. 2022 Jun 17. 13(6): 552
      Inhibition of cathepsin D (Cat D) sensitizes cancer cells to anticancer drugs via RNF183-mediated downregulation of Bcl-xL expression. Although NF-κB activation is involved in the upregulation of RNF183 expression, the molecular mechanism of NF-κB activation by Cat D inhibition is unknown. We conducted this study to investigate the molecular mechanism underlying Cat D-mediated NF-κB activation. Interestingly, Cat D inhibition-induced IκB degradation in an autophagy-dependent manner. Knockdown of autophagy-related genes (ATG7 and Beclin1) and lysosome inhibitors (chloroquine and bafilomycin A1) blocked IκB degradation via Cat D inhibition. Itch induced K63-linked ubiquitination of IκB and then modulated the protein stability of IκB by Cat D inhibition. Inhibition of Cat D-mediated Itch activation was modulated by the JNK signaling pathway, and phosphorylated Itch could bind to IκB, resulting in polyubiquitination of IκB. Additionally, inhibition of Cat D increased autophagy flux via activation of the LKB1-AMPK-ULK1 pathway. Therefore, our results suggested that Cat D inhibition activated NF-κB signaling via degradation of autophagy-dependent IκB, which is associated with the upregulation of RNF183, an E3 ligase of Bcl-xL. Cat D inhibition enhances TRAIL-induced apoptosis through Bcl-xL degradation via upregulation of RNF183.
    DOI:  https://doi.org/10.1038/s41419-022-05011-4
  23. Mol Cell. 2022 Jun 09. pii: S1097-2765(22)00491-9. [Epub ahead of print]
      Iron is the most abundant transition metal essential for numerous cellular processes. Although most mammalian cells acquire iron through transferrin receptors, molecular players of iron utilization under iron restriction are incompletely understood. To address this, we performed metabolism-focused CRISPRa gain-of-function screens, which revealed metabolic limitations under stress conditions. Iron restriction screens identified not only expected members of iron utilization pathways but also SLCO2B1, a poorly characterized membrane carrier. SLCO2B1 expression is sufficient to increase intracellular iron, bypass the essentiality of the transferrin receptor, and enable proliferation under iron restriction. Mechanistically, SLCO2B1 mediates heme analog import in cellular assays. Heme uptake by SLCO2B1 provides sufficient iron for proliferation through heme oxygenases. Notably, SLCO2B1 is predominantly expressed in microglia in the brain, and primary Slco2b1-/- mouse microglia exhibit strong defects in heme analog import. Altogether, our work identifies SLCO2B1 as a microglia-enriched plasma membrane heme importer and provides a genetic platform to identify metabolic limitations under stress conditions.
    Keywords:  CRISPRa; SLCO2B1; heme; iron; metabolic limitation
    DOI:  https://doi.org/10.1016/j.molcel.2022.05.024
  24. Wellcome Open Res. 2022 ;7 11
      Background:  Blockade of tumour necrosis factor (anti-TNF) is effective in patients with Crohn's Disease but has been associated with infection risk and neurological complications such as demyelination. Niemann-Pick disease Type C1 (NPC1) is a lysosomal storage disorder presenting in childhood with neurological deterioration, liver damage and respiratory infections. Some NPC1 patients develop severe Crohn's disease. Our objective was to investigate the safety and effectiveness of anti-TNF in NPC1 patients with Crohn's disease. Methods: Retrospective data on phenotype and therapy response were collected in 2019-2020 for the time period 2014 to 2020 from patients in the UK, France, Germany and Canada with genetically confirmed NPC1 defects and intestinal inflammation. We investigated TNF secretion in peripheral blood mononuclear cells treated with NPC1 inhibitor in response to bacterial stimuli . Results: NPC1 inhibitor treated peripheral blood mononuclear cells (PBMCs) show significantly increased TNF production after lipopolysaccharide or bacterial challenge providing a rationale for anti-TNF therapy. We identified 4 NPC1 patients with Crohn's disease (CD)-like intestinal inflammation treated using anti-TNF therapy (mean age of onset 8.1 years, mean treatment length 27.75 months, overall treatment period 9.25 patient years). Anti-TNF therapy was associated with reduced gastrointestinal symptoms with no apparent adverse neurological events. Therapy improved intestinal inflammation in 4 patients. Conclusions: Anti-TNF therapy appears safe in patients with NPC1 and is an effective treatment strategy for the management of intestinal inflammation in these patients.
    Keywords:  Niemann-Pick disease Type C1
    DOI:  https://doi.org/10.12688/wellcomeopenres.16986.1
  25. J Nephrol. 2022 Jun 15.
      Podocytes are terminally differentiated epithelial cells of the renal glomerular tuft and these highly specialized cells are essential for the integrity of the slit diaphragm. The biological function of podocytes is primarily based on a complex ramified structure that requires sufficient nutrients and a large supply of energy in support of their unique structure and function in the glomeruli. Of note, the dysregulation of nutrient signaling and energy metabolic pathways in podocytes has been associated with a range of kidney diseases i.e., diabetic nephropathy. Therefore, nutrient-related and energy metabolic signaling pathways are critical to maintaining podocyte homeostasis and the pathogenesis of podocyte injury. Recently, a growing body of evidence has indicated that nutrient starvation induces autophagy, which suggests crosstalk between nutritional signaling with the modulation of autophagy for podocytes to adapt to nutrient deprivation. In this review, the current knowledge and advancement in the understanding of nutrient sensing, signaling, and autophagy in the podocyte biology, injury, and pathogenesis of kidney diseases is summarized. Based on the existing findings, the implications and perspective to target these signaling pathways and autophagy in podocytes during the development of novel preventive and therapeutic strategies in patients with podocyte injury-associated kidney diseases are discussed.
    Keywords:  Angiotensin II; Autophagy; Insulin signaling; Nutritional signaling pathway; Podocyte; mTOR
    DOI:  https://doi.org/10.1007/s40620-022-01365-2
  26. Geroscience. 2022 Jun 13.
      At the cellular level, many aspects of aging are conserved across species. This has been demonstrated by numerous studies in simple model organisms like Saccharomyces cerevisiae, Caenorhabdits elegans, and Drosophila melanogaster. Because most genetic screens examine loss of function mutations or decreased expression of genes through reverse genetics, essential genes have often been overlooked as potential modulators of the aging process. By taking the approach of increasing the expression level of a subset of conserved essential genes, we found that 21% of these genes resulted in increased replicative lifespan in S. cerevisiae. This is greater than the ~ 3.5% of genes found to affect lifespan upon deletion, suggesting that activation of essential genes may have a relatively disproportionate effect on increasing lifespan. The results of our experiments demonstrate that essential gene overexpression is a rich, relatively unexplored means of increasing eukaryotic lifespan.
    Keywords:  Aging; C. elegans; Essential gene; Orthologs; S. cerevisiae
    DOI:  https://doi.org/10.1007/s11357-022-00604-5
  27. Proc Natl Acad Sci U S A. 2022 Jun 28. 119(26): e2207055119
      
    DOI:  https://doi.org/10.1073/pnas.2207055119
  28. Front Genet. 2022 ;13 904224
      Tuberous sclerosis, also known as tuberous sclerosis complex (TSC), is an autosomal dominant defect characterized by hamartomas in multiple organ systems. Inactivating variants cause this defect in either the TSC1 gene or the TSC2 gene, leading to hamartin or tuberin protein dysfunction, thus resulting in TSC. The diagnostic criteria for TSC suggest that it can be diagnosed by identifying a heterozygous pathogenic variant of TSC1 or TSC2, even in the absence of clinical signs. In a 4-year-old girl, we identified a splicing variant (NM_000548.4: c.2967-1G>T) that she inherited from her father. Neither the girl (patient) nor her father showed typical features of TSC. This variant is located in a NAGNAG acceptor, which can produce mRNA isoforms that differ by a three-nucleotide indel. Reverse transcription polymerase chain reaction analysis of the patient and both parents' blood RNA samples suggested two different splicing patterns, and these two splicing patterns differed in the presence or absence of the first codon of exon 27, thus providing two splicing products designated as isoforms A and B, respectively. Furthermore, the proportions of these two patterns varied between the patient and either parent. A minigene assay further confirmed that the c.2967-1G>T variant led to the absence of isoform A (including the first codon of exon 27). The finding of our study demonstrates this variant, c.2967-1G>T, disrupts the balance of an alternative splice event which involves the use of two tandem alternatives acceptors and is not associated with typical symptoms of tuberous sclerosis. Our finding is of importance for genetic counseling and suggests that we need to be vigilant to avoid misdiagnosis when we encounter such a site.
    Keywords:  NAGNAG acceptor; TSC2; alternative splicing; c.2967-1G>T; splicing variant; tuberous sclerosis
    DOI:  https://doi.org/10.3389/fgene.2022.904224
  29. Traffic. 2022 Jun 14.
      Many intracellular pathogens, such as bacteria and large viruses, enter eukaryotic cells via phagocytosis, then replicate and proliferate inside the host. To avoid degradation in the phagosomes, they have developed strategies to modify vesicle trafficking. Although several strategies of bacteria have been characterized, it is not clear whether viruses also interfere with the vesicle trafficking of the host. Recently, we came across SNARE proteins encoded in the genomes of several bacteria of the order Legionellales. These pathogenic bacteria may use SNAREs to interfere with vesicle trafficking, since SNARE proteins are the core machinery for vesicle fusion during transport. They assemble into membrane-bridging SNARE complexes that bring membranes together. We now have also discovered SNARE proteins in the genomes of diverse giant viruses. Our biochemical experiments showed that these proteins are able to form SNARE complexes. We also found other key trafficking factors that work together with SNAREs such as NSF, SM, and Rab proteins encoded in the genomes of giant viruses, suggesting that viruses can make use of a large genetic repertoire of trafficking factors. Most giant viruses possess different collections, suggesting that these factors entered the viral genome multiple times. In the future, the molecular role of these factors during viral infection need to be studied. This article is protected by copyright. All rights reserved.
    Keywords:  Eukaryota; Giant Viruses; Legionella; Mimivirus; Munc18 Proteins; N-ethylmaleimide-sensitive Factor; Ras Protein; SNARE Proteins; membrane trafficking
    DOI:  https://doi.org/10.1111/tra.12860
  30. Elife. 2022 Jun 16. pii: e76356. [Epub ahead of print]11
      Synaptic vesicles are primed into a state that is ready for fast neurotransmitter release upon Ca2+-binding to Synaptotagmin-1. This state likely includes trans-SNARE complexes between the vesicle and plasma membranes that are bound to Synaptotagmin-1 and complexins. However, the nature of this state and the steps leading to membrane fusion are unclear, in part because of the difficulty of studying this dynamic process experimentally. To shed light into these questions, we performed all-atom molecular dynamics simulations of systems containing trans-SNARE complexes between two flat bilayers or a vesicle and a flat bilayer with or without fragments of Synaptotagmin-1 and/or complexin-1. Our results need to be interpreted with caution because of the limited simulation times and the absence of key components, but suggest mechanistic features that may control release and help visualize potential states of the primed Synaptotagmin-1-SNARE-complexin-1 complex. The simulations suggest that SNAREs alone induce formation of extended membrane-membrane contact interfaces that may fuse slowly, and that the primed state contains macromolecular assemblies of trans-SNARE complexes bound to the Synaptotagmin-1 C2B domain and complexin-1 in a spring-loaded configuration that prevents premature membrane merger and formation of extended interfaces, but keeps the system ready for fast fusion upon Ca2+ influx.
    Keywords:  molecular biophysics; none; structural biology
    DOI:  https://doi.org/10.7554/eLife.76356