bims-lysosi Biomed News
on Lysosomes and signaling
Issue of 2021‒06‒27
33 papers selected by
Stephanie Fernandes
Max Planck Institute for Biology of Ageing


  1. Structure. 2021 Jun 19. pii: S0969-2126(21)00207-0. [Epub ahead of print]
      Transient receptor potential mucolipin 1 (TRPML1) regulates lysosomal calcium signaling, lipid trafficking, and autophagy-related processes. This channel is regulated by phosphoinositides and the low pH environment of the lysosome, maintaining calcium levels essential for proper lysosomal function. Recently, several small molecules specifically targeting the TRPML family have been demonstrated to modulate channel activity. One of these, a synthetic antagonist ML-SI3, can prevent lysosomal calcium efflux and has been reported to block downstream TRPML1-mediated induction of autophagy. Here, we report a cryo-electron microscopy structure of human TRPML1 with ML-SI3 at 2.9-Å resolution. ML-SI3 binds to the hydrophobic cavity created by S5, S6, and PH1, the same cavity where the synthetic agonist ML-SA1 binds. Electrophysiological characterizations show that ML-SI3 can compete with ML-SA1, blocking channel activation yet does not inhibit PI(3,5)P2-dependent activation of the channel. Consequently, this work provides molecular insight into how ML-SI3 and native lipids regulate TRPML1 activity.
    Keywords:  ML-SI3; PIP2; TRPML1; cryo-EM; electrophysiology
    DOI:  https://doi.org/10.1016/j.str.2021.06.003
  2. JCI Insight. 2021 Jun 22. pii: 142073. [Epub ahead of print]
      The majority of patients affected with lysosomal storage disorders (LSD) exhibit neurological symptoms. For mucopolysaccharidosis type IIIC (MPSIIIC), the major burdens are progressive and severe neuropsychiatric problems and dementia primarily thought to stem from neurodegeneration. Using the MPSIIIC mouse model we studied whether clinical manifestations preceding massive neurodegeneration arise from synaptic dysfunction.Reduced levels or abnormal distribution of multiple synaptic proteins were revealed in cultured hippocampal and CA1 pyramidal MPSIIIC neurons. These defects were rescued by virus-mediated gene correction. Dendritic spines were reduced in pyramidal neurons of mouse models of MPSIIIC and other (Tay-Sachs, sialidosis) LSD as early as postnatal day 10. MPSIIIC neurons also presented alterations in frequency and amplitude of miniature excitatory and inhibitory postsynaptic currents, sparse synaptic vesicles, reduced postsynaptic densities, disorganised microtubule networks and partially impaired axonal transport of synaptic proteins. Furthermore, postsynaptic densities were reduced in post-mortem cortices of human MPS patients suggesting that the pathology is a common hallmark for neurological LSD.Together, our results demonstrate that lysosomal storage defects cause early alterations in synaptic structure and abnormalities in neurotransmission originating from impaired synaptic vesicular transport, and suggest that synaptic defects could be targeted to treat behavioral and cognitive defects in neurological LSD patients.
    Keywords:  Genetics; Lysosomes; Neuroscience; Synapses
    DOI:  https://doi.org/10.1172/jci.insight.142073
  3. J Biol Chem. 2021 Jun 16. pii: S0021-9258(21)00684-0. [Epub ahead of print] 100884
      The mechanistic target of rapamycin (mTOR) is often referred to as a master regulator of cellular metabolism that can integrate growth factor and nutrient signaling. Fasting suppresses hepatic mTORC1 activity via the activity of the Tuberous Sclerosis Complex (TSC), a negative regulator of mTORC1, in order to suppress anabolic metabolism. The loss of TSC1 in the liver locks the liver in a constitutively anabolic state even during fasting, which was suggested to regulate PPARα signaling and ketogenesis, but the molecular determinants of this regulation are unknown. Here, we examined if the activation of the mTORC1 complex in mice by the liver-specific deletion of TSC1 (TSC1L-/-) is sufficient to suppress PPARα signaling and therefore ketogenesis in the fasted state. We found that the activation of mTORC1 in the fasted state is not sufficient to repress PPARα-responsive genes or ketogenesis. Further, we examined whether the activation of the anabolic program mediated by mTORC1 complex activation in the fasted state could suppress the robust catabolic programming and enhanced PPARα transcriptional response of mice with a liver-specific defect in mitochondrial long-chain fatty acid oxidation using Cpt2L-/- mice. We generated liver-specific Cpt2L-/-; Tsc1L-/- double knockout mice and showed that the activation of mTORC1 by deletion of TSC1 could not suppress the catabolic PPARα-mediated phenotype of Cpt2L-/- mice. These data demonstrate that the activation of mTORC1 by the deletion of TSC1 is not sufficient to suppress a PPARα transcriptional program or ketogenesis following fasting.
    Keywords:  Ketogenesis; carnitine palmitoyltransferase 2 (Cpt2); fatty acid oxidation; mTOR; metabolism; peroxisome proliferator-activated receptor alpha (PPARα); β-hydroxybutyrate (βHB)
    DOI:  https://doi.org/10.1016/j.jbc.2021.100884
  4. Life Sci. 2021 Jun 22. pii: S0024-3205(21)00731-1. [Epub ahead of print] 119745
      The evolutionarily conserved mechanistic target of rapamycin (mTOR) forms two functionally distinct complexes, -the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2)-which differ in their subunit composition. Although the function of mTORC1 has been studied extensively, the interaction between mTORC1 and the ubiquitin-proteasome system (UPS) remains unclear. To facilitate a thorough understanding of the mechanismby which UPS regulates mTORC1 activity, steady isotope labeling with amino acids in cell culture (SILAC) technology was used to screen for potential mTORC1-interacting UPS members. Fourteen previously unknown proteins bound to mTOR in HEK293 cells with a SILAC ratio (heavy/light, H/L) above 2, five of which are components of the UPS. Subsequent immunoprecipitation analysis confirmed that ubiquitin-relevant protein 2-like (UBAP2L, also known as NICE-4) binds to both mTOR and Raptor, but not Rictor, suggesting that NICE-4 specifically interacts with mTORC1, but not mTORC2. Interestingly, NICE-4 is essential for basic mTORC1 activity in both HeLa cancer cells and HEK293 cells. In addition, NICE-4 depletion markedly suppressed proliferation of both HeLa and HEK293 cells as well as survival of HeLa cells. Collectively, these results revealed the identity of novel mTOR-interacting UPS proteins and established NICE-4 as a critical UPS member that maintains mTORC1 activity.
    Keywords:  Cancer; HeLa cells; NICE-4; SILAC; Ubiquitin-proteasome system; mTORC1
    DOI:  https://doi.org/10.1016/j.lfs.2021.119745
  5. Nat Commun. 2021 06 23. 12(1): 3906
      Age-related macular degeneration (AMD) is a multifactorial neurodegenerative disorder. Although molecular mechanisms remain elusive, deficits in autophagy have been associated with AMD. Here we show that deficiency of calcium and integrin binding protein 2 (CIB2) in mice, leads to age-related pathologies, including sub-retinal pigment epithelium (RPE) deposits, marked accumulation of drusen markers APOE, C3, Aβ, and esterified cholesterol, and impaired visual function, which can be rescued using exogenous retinoids. Cib2 mutant mice exhibit reduced lysosomal capacity and autophagic clearance, and increased mTORC1 signaling-a negative regulator of autophagy. We observe concordant molecular deficits in dry-AMD RPE/choroid post-mortem human tissues. Mechanistically, CIB2 negatively regulates mTORC1 by preferentially binding to 'nucleotide empty' or inactive GDP-loaded Rheb. Upregulated mTORC1 signaling has been implicated in lymphangioleiomyomatosis (LAM) cancer. Over-expressing CIB2 in LAM patient-derived fibroblasts downregulates hyperactive mTORC1 signaling. Thus, our findings have significant implications for treatment of AMD and other mTORC1 hyperactivity-associated disorders.
    DOI:  https://doi.org/10.1038/s41467-021-24056-1
  6. J Bone Miner Res. 2021 Jun 22.
      Tumor necrosis factor receptor-associated factors (TRAFs) are crucial for receptor activator of nuclear factor-κB (RANK) activation in osteoclasts. However, the upstream mechanisms of TRAF members in the osteoclastic lineage remain largely unknown. Here, we demonstrated that Rictor, a key component of mechanistic target of rapamycin complex 2 (mTORC2), was crucial for TRAF6/TRAF3 expression in osteoclasts. Our ex vivo and in vivo studies showed that Rictor ablation from the osteoclastic lineage reduced osteoclast numbers and increased bone mass in mice. Mechanistically, we found that Rictor ablation restricted osteoclast formation which disrupted TRAF6 stability and caused autophagy block in a manner distinct from mTORC1, resulting in reduced TRAF3 degradation. Boosting TRAF6 expression or knockdown of TRAF3 levels in Rictor-deficient cells could both overcome the defect. Moreover, Rictor could interact with TRAF6 upon RANKL stimulation and loss of Rictor impaired TRAF6 stability and promoted its ubiquitinated degradation. These findings established an innovative link between Rictor, TRAF protein levels and autophagic block. More importantly, mTOR complexes in the osteoclastic lineage are likely switches for coordinating TRAF6 and TRAF3 protein levels, and Rictor may function as an essential upstream regulator of TRAF6/TRAF3 that is partially independent of mTORC1 activity. Inhibitors targeting Rictor may therefore be valuable for preventing or treating osteoclast-related diseases.
    Keywords:  Rictor; TRAF3; TRAF6; autophagic flux; osteoclast
    DOI:  https://doi.org/10.1002/jbmr.4398
  7. Cell Death Differ. 2021 Jun 22.
      During autophagy, the coordinated actions of autophagosomes and lysosomes result in the controlled removal of damaged intracellular organelles and superfluous substrates. The evolutionary conservation of this process and its requirement for maintaining cellular homeostasis emphasizes the need to better dissect the pathways governing its molecular regulation. In our previously performed high-content screen, we assessed the effect of 1530 RNA-binding proteins on autophagy. Among the top regulators, we identified the eukaryotic translation initiation factor 4A-3 (eIF4A3). Here we show that depletion of eIF4A3 leads to a potent increase in autophagosome and lysosome biogenesis and an enhanced autophagic flux. This is mediated by the key autophagy transcription factor, TFEB, which becomes dephosphorylated and translocates from the cytoplasm to the nucleus where it elicits an integrated transcriptional response. We further identified an exon-skipping event in the transcript encoding for the direct TFEB kinase, GSK3B, which leads to a reduction in GSK3B expression and activity. Through analysis of TCGA data, we found a significant upregulation of eIF4A3 expression across several cancer types and confirmed the potential relevance of this newly identified signaling axis in human tumors. Hence, our data suggest a previously unrecognized role for eIF4A3 as a gatekeeper of autophagy through the control of TFEB activation, revealing a new mechanism for autophagy regulation.
    DOI:  https://doi.org/10.1038/s41418-021-00822-y
  8. Autophagy. 2021 Jun 24. 1-2
      Cellular stress response mechanisms typically increase organellar quantity and volume. To restore cellular homeostasis and organellar integrity, the surplus organelles are cleared by macroautophagy/autophagy, an intracellular process that shuttles cytoplasmic material to the lysosomes for degradation. The degradation is mediated by autophagy receptors that selectively link the degradable cargo to the autophagy machinery. Studies have identified receptors for the degradation of mitochondria, endoplasmic reticulum, lysosomes, and peroxisomes. The autophagic degradation of the Golgi, named Golgiphagy, however, has remained undefined. The Golgi is essential for the processing, sorting and trafficking of proteins and lipids in the secretory pathway. In a recent study, we identified CALCOCO1 as a Golgiphagy receptor in response to nutrient deprivation. CALCOCO1 interacts with Golgi membranes by binding to cytoplasmic Ankyrin repeat (AR) domains of Golgi resident ZDHHC17 and ZDHHC13 palmitoyltransferases (PATs) via a defined zDHHC-AR-binding motif (zDABM) to recruit autophagy machinery. Lack of CALCOCO1 in cells causes an impaired Golgiphagy and expansion of the Golgi.
    Keywords:  Autophagy receptor; CALCOCO1; Golgi; Golgiphagy; Golgiphagy receptor; ZDHHC17; zDABM motif
    DOI:  https://doi.org/10.1080/15548627.2021.1940610
  9. Curr Biol. 2021 Jun 15. pii: S0960-9822(21)00750-8. [Epub ahead of print]
      Macroautophagy (hereafter referred to as autophagy) is a conserved process that promotes cellular homeostasis through the degradation of cytosolic components, also known as cargo. During autophagy, cargo is sequestered into double-membrane vesicles called autophagosomes, which are predominantly transported in the retrograde direction to the perinuclear region to fuse with lysosomes, thus ensuring cargo degradation.1 The mechanisms regulating directional autophagosomal transport remain unclear. The ATG8 family of proteins associates with autophagosome membranes2 and plays key roles in autophagy, including the movement of autophagosomes. This is achieved via the association of ATG8 with adaptor proteins like FYCO1, involved in the anterograde transport of autophagosomes toward the cell periphery.1,3-5 We previously reported that phosphorylation of LC3B/ATG8 on threonine 50 (LC3B-T50) by the Hippo kinase STK4/MST1 is required for autophagy through unknown mechanisms.6 Here, we show that STK4-mediated phosphorylation of LC3B-T50 reduces the binding of FYCO1 to LC3B. In turn, impairment of LC3B-T50 phosphorylation decreases starvation-induced perinuclear positioning of autophagosomes as well as their colocalization with lysosomes. Moreover, a significantly higher number of LC3B-T50A-positive autophagosomes undergo aberrant anterograde movement to axonal tips in mammalian neurons and toward the periphery of mammalian cells. Our data support a role of a nutrient-sensitive STK4-LC3B-FYCO1 axis in the regulation of the directional transport of autophagosomes, a key step of the autophagy process, via the post-translational modification of LC3B.
    Keywords:  FYCO1; Hippo kinases; LC3B; STK4; autophagy; starvation; trafficking; vesicle transport
    DOI:  https://doi.org/10.1016/j.cub.2021.05.052
  10. Autophagy. 2021 Jun 23. 1-16
      General autophagy is an evolutionarily conserved process in eukaryotes, by which intracellular materials are transported into and degraded inside lysosomes or vacuoles, with the main goal of recycling those materials during periods of starvation. The molecular bases of autophagy have been widely described in Saccharomyces cerevisiae, and the specific roles of Atg proteins in the process were first characterized in this model system. Important contributions have been made in Schizosaccharomyces pombe highlighting the evolutionary similarity and, at the same time, diversity of Atg components in autophagy. However, little is known regarding signals, pathways and role of autophagy in this distant yeast. Here, we undertake a global approach to investigate the signals, the pathways and the consequences of autophagy activation. We demonstrate that not only nitrogen but several nutritional deprivations including lack of carbon, sulfur, phosphorus or leucine sources, trigger autophagy, and that the TORC1, TORC2 and MAP kinase Sty1 pathways control the onset of autophagy. Furthermore, we identify an unexpected phenotype of autophagy-defective mutants, namely their inability to survive in the absence of leucine when biosynthesis of this amino acid is impaired.Abbreviations: ATG: autophagy-related; cAMP: cyclic adenosine monophosphate; cDNA: complementary deoxyribonucleic acid; GFP: green fluorescence protein; Gluc: glucose; Leu: leucine; MAP: mitogen-activated protein; MM: minimal medium; PI: propidium iodine; PKA: protein kinase A; RNA: ribonucleic acid; RT-qPCR: real time quantitative polymerase chain reaction; S. cerevisiae: Saccharomyces cerevisiae; S. pombe: Schizosaccharomyces pombe; TCA: trichloroacetic acid; TOR: target of rapamycin; TORC1: target of rapamycin complex 1; TORC2: target of rapamycin complex 2; YE5S: yeast extract 5 amino acid supplemented.
    Keywords:  Autophagy; Gfp-Atg8; Sty1; Torc1; Torc2; map kinase; nutrient starvation
    DOI:  https://doi.org/10.1080/15548627.2021.1935522
  11. Front Neurol. 2021 ;12 679927
      Genetics has driven significant discoveries in the field of neurodegenerative diseases (NDDs). An emerging theme in neurodegeneration warrants an urgent and comprehensive update: that carrier status of early-onset autosomal recessive (AR) disease, typically considered benign, is associated with an increased risk of a spectrum of late-onset NDDs. Glucosylceramidase beta (GBA1) gene mutations, responsible for the AR lysosomal storage disorder Gaucher disease, are a prominent example of this principle, having been identified as an important genetic risk factor for Parkinson disease. Genetic analyses have revealed further examples, notably GRN, TREM2, EIF2AK3, and several other LSD and mitochondria function genes. In this Review, we discuss the evidence supporting the strikingly distinct allele-dependent clinical phenotypes observed in carriers of such gene mutations and its impact on the wider field of neurodegeneration.
    Keywords:  EIF2AK3; GBA1; GRN; TREM2; autosomal; carrier; neurodegenerative; recessive
    DOI:  https://doi.org/10.3389/fneur.2021.679927
  12. Mol Genet Metab. 2021 Jun 15. pii: S1096-7192(21)00724-1. [Epub ahead of print]
      Mucopolysaccharidoses (MPS) are lysosomal storage diseases (LSDs) caused by the deficiency of enzymes essential for the metabolism of extracellular matrix components called glycosaminoglycans (GAGs). To understand the physiopathology and alterations due to the lysosomal accumulation resulting from enzymatic deficiencies and their secondary outcomes can improve the diagnosis and treatment of rare genetic diseases. This work presents a database for differentially expressed genes from different public MPS data. We developed our database, including 13 studies previously deposited in the GEO (https://www.ncbi.nlm.nih.gov/geo/). The website is hosted in the UFRGS data processing center (CPD) and is available at <https://www.ufrgs.br/mpsbase/>. The site was constructed in PHP, and the analyses were performed in R. The organisms represented by the datasets are Canis lupus familiaris, Homo sapiens, Mus musculus, and Rattus norvegicus. The user can search for the differentially expressed genes and ontologies by species, MPS type, or tissue type. For each comparison, a heatmap with the 50 top differentially expressed genes is available as well as dot plots for the 30 top ontologies divided by biological process, cellular component, KEGG pathways, and molecular function. This data is also fully available in tables. There are 54 possible comparisons involving about 5000 to 10,000 genes each. This website is the only specific database for MPS with filtering and presenting their results in a one-click approach to the best of our knowledge. The development of such analytical and automated strategies accessible to health professionals is essential for fostering MPS research. The MPSBase is a web user-friendly, comprehensive repository of differentially expressed genes and ontologies regarding the MPS data.
    Keywords:  Biological databases; Biomarkers; Gene expression analysis; Lysosomal storage diseases; Mucopolysaccharidoses; Ontology analysis
    DOI:  https://doi.org/10.1016/j.ymgme.2021.06.004
  13. EMBO J. 2021 Jun 21. e107240
      Efficient degradation of by-products of protein biogenesis maintains cellular fitness. Strikingly, the major biosynthetic compartment in eukaryotic cells, the endoplasmic reticulum (ER), lacks degradative machineries. Misfolded proteins in the ER are translocated to the cytosol for proteasomal degradation via ER-associated degradation (ERAD). Alternatively, they are segregated in ER subdomains that are shed from the biosynthetic compartment and are delivered to endolysosomes under control of ER-phagy receptors for ER-to-lysosome-associated degradation (ERLAD). Demannosylation of N-linked oligosaccharides targets terminally misfolded proteins for ERAD. How misfolded proteins are eventually marked for ERLAD is not known. Here, we show for ATZ and mutant Pro-collagen that cycles of de-/re-glucosylation of selected N-glycans and persistent association with Calnexin (CNX) are required and sufficient to mark ERAD-resistant misfolded proteins for FAM134B-driven lysosomal delivery. In summary, we show that mannose and glucose processing of N-glycans are triggering events that target misfolded proteins in the ER to proteasomal (ERAD) and lysosomal (ERLAD) clearance, respectively, regulating protein quality control in eukaryotic cells.
    Keywords:  ER-phagy; ERAD; ERLAD; N-glycan processing; Protein quality control
    DOI:  https://doi.org/10.15252/embj.2020107240
  14. Biochem Biophys Res Commun. 2021 Jun 16. pii: S0006-291X(21)00949-9. [Epub ahead of print]567 112-117
      Grb2-associated-binding protein-2 (Gab2) is a member of the Gab/DOS family and functions as an adapter protein downstream of several growth factor signaling pathways. Gab2 is considered an Alzheimer's disease susceptibility gene. However, the role of Gab2 in the brain is still largely unknown. Herein, we report that Gab2 is involved in the postnatal development of microglia in mice. The Gab2 expression in the brain was detected at postnatal day 1 (P1) and increased until P14 but decreased thereafter. The tyrosine phosphorylation of Gab2 (pGab2) was also detected at P1 and increased until P14. Next, we focused on microglial development in Gab2 knockout and heterozygous mice. Although differences were not detected in the cytoplasmic area of Iba1-labeled microglia between Gab2(±) and Gab2(-/-) mice, the analysis of CD68 and cathepsin D (indicators of microglial lysosomal activation) immunolabeling within Iba1+ cells revealed significant underdevelopment of microglial lysosomes in Gab2(-/-) mice at P60. In addition to the developmental abnormality of microglia in Gab2(-/-) mice, lipopolysaccharide-induced lysosomal activation was selectively suppressed in Gab2(-/-) mice compared to that in Gab2(±) mice. Our findings suggest that Gab2 is involved not only in postnatal development but also in lysosomal activation of microglia, therefore Gab2 dysfunction in microglia might potentially contribute to the development of neurodegenerative diseases.
    Keywords:  Cathepsin D; Development; Gab2; Lysosome; Microglia; Phagocytosis
    DOI:  https://doi.org/10.1016/j.bbrc.2021.06.028
  15. Mol Pharmacol. 2021 Jun 21. pii: MOLPHARM-MR-2021-000310. [Epub ahead of print]
      The family of AGC kinases not only regulate cellular biology by phosphorylating substrates, but are themselves controlled by phosphorylation. Phosphorylation generally occurs at two conserved regions in these kinases: a loop near the entrance to the active site, termed the activation loop, that correctly aligns residues for catalysis, and a C-terminal tail whose phosphorylation at a site termed the hydrophobic motif stabilizes the active conformation. Whereas phosphorylation of the activation loop is well established to be catalyzed by the phosphoinositide-dependent kinase 1 (PDK1), the mechanism of phosphorylation of the C-tail hydrophobic motif has been controversial. For a subset of AGC kinases, which includes most protein kinase C (PKC) isozymes and Akt, phosphorylation of the hydrophobic motif in cells was shown to depend on mTORC2 over 15 years ago, yet whether by direct phosphorylation or by another mechanism has remained elusive. The recent identification of a novel and evolutionarily conserved phosphorylation site on the C-tail termed the TOR-Interaction Motif (TIM) has finally unraveled the mystery of how mTORC2 regulates its client kinases. mTORC2 does not directly phosphorylate the hydrophobic motif, rather it converts kinases such as PKC and Akt into a conformation that can ultimately autophosphorylate at the hydrophobic motif. Identification of the direct mTOR phosphorylation that facilitates auto-regulation of the C-tail hydrophobic motif revises the activation mechanisms of mTOR-regulated AGC kinases. This new twist to an old tail opens avenues for therapeutic intervention. Significance Statement The enzyme mTORC2 has been an enigmatic regulator of AGC kinases such as protein kinase C (PKC) and Akt. The recent discovery of a motif named the TOR Interaction Motif in the C-tail of these kinases solves the mystery: mTORC2 marks these kinases for maturity by, ultimately, facilitating autophosphorylation another C-tail site, the hydrophobic motif.
    Keywords:  AKT; Protein Kinase C (PKC); mTOR
    DOI:  https://doi.org/10.1124/molpharm.121.000310
  16. EMBO J. 2021 Jun 23. e108758
      Receptor crosstalk is the phenomenon by which one cell surface receptor communicates with another to modulate its activity. In this issue, Smith et al (2021) demonstrate that such crosstalk may involve endocytic trafficking, as ligands promoting FGFR2b recycling induce a specific "priming" EGFR phosphorylation to direct unliganded EGFR to the recycling endosome, slow the lysosomal degradation of ligand-stimulated EGFR, and enhance signaling and cell proliferation.
    DOI:  https://doi.org/10.15252/embj.2021108758
  17. Sci Rep. 2021 Jun 25. 11(1): 13338
      The Regulator of G protein signaling 4 (Rgs4) is a member of the RGS proteins superfamily that modulates the activity of G-protein coupled receptors. It is mainly expressed in the nervous system and is linked to several neuronal signaling pathways; however, its role in neural development in vivo remains inconclusive. Here, we generated and characterized a rgs4 loss of function model (MZrgs4) in zebrafish. MZrgs4 embryos showed motility defects and presented reduced head and eye sizes, reflecting defective motoneurons axon outgrowth and a significant decrease in the number of neurons in the central and peripheral nervous system. Forcing the expression of Rgs4 specifically within motoneurons rescued their early defective outgrowth in MZrgs4 embryos, indicating an autonomous role for Rgs4 in motoneurons. We also analyzed the role of Akt, Erk and mechanistic target of rapamycin (mTOR) signaling cascades and showed a requirement for these pathways in motoneurons axon outgrowth and neuronal development. Drawing on pharmacological and rescue experiments in MZrgs4, we provide evidence that Rgs4 facilitates signaling mediated by Akt, Erk and mTOR in order to drive axon outgrowth in motoneurons and regulate neuronal numbers.
    DOI:  https://doi.org/10.1038/s41598-021-92758-z
  18. Nat Chem Biol. 2021 Jun 24.
      The clinical benefits of pan-mTOR active-site inhibitors are limited by toxicity and relief of feedback inhibition of receptor expression. To address these limitations, we designed a series of compounds that selectively inhibit mTORC1 and not mTORC2. These 'bi-steric inhibitors' comprise a rapamycin-like core moiety covalently linked to an mTOR active-site inhibitor. Structural modification of these components modulated their affinities for their binding sites on mTOR and the selectivity of the bi-steric compound. mTORC1-selective compounds potently inhibited 4EBP1 phosphorylation and caused regressions of breast cancer xenografts. Inhibition of 4EBP1 phosphorylation was sufficient to block cancer cell growth and was necessary for maximal antitumor activity. At mTORC1-selective doses, these compounds do not alter glucose tolerance, nor do they relieve AKT-dependent feedback inhibition of HER3. Thus, in preclinical models, selective inhibitors of mTORC1 potently inhibit tumor growth while causing less toxicity and receptor reactivation as compared to pan-mTOR inhibitors.
    DOI:  https://doi.org/10.1038/s41589-021-00813-7
  19. J Biol Chem. 2021 Jun 17. pii: S0021-9258(21)00691-8. [Epub ahead of print] 100891
      Regulation of cellular proliferation and quiescence is a central issue in biology that has been studied using model unicellular eukaryotes, such as the fission yeast Schizosaccharomyces pombe. We previously reported that the ubiquitin/proteasome pathway and autophagy are essential to maintain quiescence induced by nitrogen deprivation in S. pombe; however, specific ubiquitin ligases that maintain quiescence are not fully understood. Here we investigated the SPX-RING type ubiquitin ligase Pqr1, identified as required for quiescence in a genetic screen. Pqr1 is found to be crucial for vacuolar proteolysis, the final step of autophagy, through proper regulation of phosphate and its polymer polyphosphate. Pqr1 restricts phosphate uptake into the cell through ubiquitination and subsequent degradation of phosphate transporters on plasma membranes. We hypothesized that Pqr1 may act as the central regulator for phosphate control in S. pombe, through the function of the SPX domain involved in phosphate sensing. Deletion of pqr1+ resulted in hyper-accumulation of intracellular phosphate and polyphosphate, and in improper autophagy-dependent proteolysis under conditions of nitrogen starvation. Polyphosphate hyper-accumulation in pqr1+-deficient cells was mediated by the polyphosphate synthase VTC complex in vacuoles. Simultaneous deletion of VTC complex subunits rescued Pqr1 mutant phenotypes, including defects in proteolysis and loss of viability during quiescence. We conclude that excess polyphosphate may interfere with proteolysis in vacuoles by mechanisms that as yet remain unknown. The present results demonstrate a connection between polyphosphate metabolism and vacuolar functions for proper autophagy-dependent proteolysis, and we propose that polyphosphate homeostasis contributes to maintenance of cellular viability during quiescence.
    Keywords:  autophagy; cell cycle; fission yeast; life span; polyphosphate; vacuole
    DOI:  https://doi.org/10.1016/j.jbc.2021.100891
  20. Hum Mol Genet. 2021 Jun 25. pii: ddab159. [Epub ahead of print]
      Krabbe disease, an inherited leukodystrophy, is a sphingolipidosis caused by deficiency of β-galactocerebrosidase: it is characterized by myelin loss, and pathological activation of macrophage/microglia and astrocytes. To define driving pathogenic factors, we explored the expression repertoire of candidate neuroinflammatory genes: upregulation of receptor interacting protein kinase 1 (Ripk1) and disease-associated microglia (DAM) genes, including Cst7 and Ch25h, correlated with severity of Krabbe disease genetically modelled in the twitcher mouse. Upregulation of Ripk1 in Iba1/Mac2-positive microglia/macrophage associated with the pathognomic hypertrophic/globoid phenotype of this disease. Widespread accumulation of ubiquitinin1 in white and grey matter co-localised with p62. In Sandhoff disease, another sphingolipid disorder, neuroinflammation, accumulation of p62 and increased Ripk1 expression was observed. The upregulated DAM genes and macrophage/microglia expression of Ripk1 in the authentic model of Krabbe disease strongly resemble those reported in Alzheimer disease associating with disturbed autophagosomal/lysosomal homeostasis. Activation of this shared molecular repertoire, suggests the potential for therapeutic interdiction at a common activation step, irrespective of proximal causation. To clarify the role of Ripk1 in the pathogenesis of Krabbe disease, we first explored the contribution of its kinase function, by intercrossing twitcher and the K45A kinase-dead Ripk1 mouse and breeding to homozygosity. Genetic ablation of Ripk1 kinase activity neither altered the neuropathological features nor the survival of twitcher mice. We conclude that Ripk1 kinase-dependent inflammatory and degenerative capabilities play no instrumental role in Krabbe disease; however, putative kinase-independent functions of Ripk1 remain formally to be explored in its molecular pathogenesis.
    DOI:  https://doi.org/10.1093/hmg/ddab159
  21. EMBO J. 2021 Jun 25. e108777
      Selective autophagy relies on adaptor proteins to bind and transport cargos (or substrates) to the lysosome or vacuole, yet the mechanisms for cargo recognition are not well understood. In this issue, Wang et al (2021) showed that in the fission yeast, Nbr1, a homolog of a mammalian selective autophagy adaptor, recognizes vacuolar hydrolases Ams1 and Ape4 through both versatile and cargo-specific interactions with the Nbr1 ZZ1 domain.
    DOI:  https://doi.org/10.15252/embj.2021108777
  22. PLoS One. 2021 ;16(6): e0253494
      The sla1+ gene of Schizosachharoymces pombe encodes La protein which promotes proper processing of precursor-tRNAs. Deletion of sla1 (sla1Δ) leads to disrupted tRNA processing and sensitivity to target of rapamycin (TOR) inhibition. Consistent with this, media containing NH4+ inhibits leucine uptake and growth of sla1Δ cells. Here, transcriptome analysis reveals that genes upregulated in sla1Δ cells exhibit highly significant overalp with general amino acid control (GAAC) genes in relevant transcriptomes from other studies. Growth in NH4+ media leads to additional induced genes that are part of a core environmental stress response (CESR). The sla1Δ GAAC response adds to evidence linking tRNA homeostasis and broad signaling in S. pombe. We provide evidence that deletion of the Rrp6 subunit of the nuclear exosome selectively dampens a subset of GAAC genes in sla1Δ cells suggesting that nuclear surveillance-mediated signaling occurs in S. pombe. To study the NH4+-effects, we isolated sla1Δ spontaneous revertants (SSR) of the slow growth phenotype and found that GAAC gene expression and rapamycin hypersensitivity were also reversed. Genome sequencing identified a F32V substitution in Any1, a known negative regulator of NH4+-sensitive leucine uptake linked to TOR. We show that 3H-leucine uptake by SSR-any1-F32V cells in NH4+-media is more robust than by sla1Δ cells. Moreover, F32V may alter any1+ function in sla1Δ vs. sla1+ cells in a distinctive way. Thus deletion of La, a tRNA processing factor leads to a GAAC response involving reprogramming of amino acid metabolism, and isolation of the any1-F32V rescuing mutant provides an additional specific link.
    DOI:  https://doi.org/10.1371/journal.pone.0253494
  23. Genet Med. 2021 Jun 25.
      PURPOSE: Mucolipidosis (ML) II, MLIII alpha/beta, and MLIII gamma are rare autosomal recessive lysosomal storage disorders. Data on the natural course of the diseases are scarce. These data are important for counseling, therapies development, and improvement of outcome. The aim of this study is to gain knowledge on the natural history of ML by obtaining data on survival, symptom onset, presenting symptoms, diagnosis, and pathogenic variants associated with the MLII or MLIII phenotype.METHODS: A systematic review on all published MLII and MLIII cases between 1968 and August 2019 was performed.
    RESULTS: Three hundred one articles provided data on 843 patients. Median age at diagnosis: 0.7 for MLII and 9.0 years for MLIII. Median survival: 5.0 for MLII and 62.0 years for MLIIIII. Median age of death: 1.8 for MLII and 33.0 years for MLIII. Most frequent causes of death in all ML were pulmonary and/or cardiac complications. Pathogenic variants were described in 388 patients (GNPTAB: 571, GNPTG 179).
    CONCLUSION: This review provides unique insights into the natural history of MLII and MLIII, with a clear genotype-phenotype correlation with the most frequent pathogenic variant c.3503_3504del in MLII and in MLIII alpha/beta c.22A>G for GNPTAB. All pathogenic GNPTG variants resulted in MLIII gamma.
    DOI:  https://doi.org/10.1038/s41436-021-01244-4
  24. Dis Model Mech. 2021 Jun 23. pii: dmm.048997. [Epub ahead of print]
      The vacuolar type H+-ATPase (V-ATPase) is a ubiquitous membrane-bound, multi-subunit proton pump that regulates pH of cellular compartments. V-ATPase activity is known to modulate several cellular processes, but cell type-specific V-ATPase functions remain poorly understood. Patients with mutations in specific V-ATPase subunits can develop sensorineural deafness, but underlying mechanisms are unclear. Here, we show that V-ATPase mutations disrupt formation of zebrafish neuromasts, which serve as a model system to investigate the underpinnings of hearing loss. Neuromasts consist of support cells surrounding mechanosensory hair cells that function similarly to hair cells in the mammalian inner ear. In V-ATPase mutant zebrafish embryos, neuromasts are small, malformed, and contain pyknotic nuclei that denote dying cells. Using molecular markers and live imaging, we find that loss of V-ATPase induces hair cells, but not neighboring support cells, to undergo caspase-independent necrosis-like cell death. This is the first demonstration that loss of V-ATPase can lead to necrosis-like cell death in a specific cell type in vivo. Mechanistically, loss of V-ATPase reduces mitochondrial membrane potential in hair cells, which has previously been associated with necrotic cell death. Modulating the mitochondrial permeability transition pore, which regulates mitochondrial membrane potential, improves hair cell survival. These results have implications for understanding causes of sensorineural deafness, and more broadly, reveal functions for V-ATPase in regulating mitochondrial function and promoting survival of a specific cell type in vivo.
    Keywords:  Mitochondrial membrane potential; Necrosis-like cell death; Neuromast hair cell; Vacuolar type H+-ATPase (V-ATPase); Zebrafish
    DOI:  https://doi.org/10.1242/dmm.048997
  25. Nat Commun. 2021 Jun 25. 12(1): 3973
      In human cells, P5B-ATPases execute the active export of physiologically important polyamines such as spermine from lysosomes to the cytosol, a function linked to a palette of disorders. Yet, the overall shape of P5B-ATPases and the mechanisms of polyamine recognition, uptake and transport remain elusive. Here we describe a series of cryo-electron microscopy structures of a yeast homolog of human ATP13A2-5, Ypk9, determined at resolutions reaching 3.4 Å, and depicting three separate transport cycle intermediates, including spermine-bound conformations. Surprisingly, in the absence of cargo, Ypk9 rests in a phosphorylated conformation auto-inhibited by the N-terminus. Spermine uptake is accomplished through an electronegative cleft lined by transmembrane segments 2, 4 and 6. Despite the dramatically different nature of the transported cargo, these findings pinpoint shared principles of transport and regulation among the evolutionary related P4-, P5A- and P5B-ATPases. The data also provide a framework for analysis of associated maladies, such as Parkinson's disease.
    DOI:  https://doi.org/10.1038/s41467-021-24148-y
  26. Mol Genet Metab. 2021 Jun 15. pii: S1096-7192(21)00732-0. [Epub ahead of print]
      Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient β-glucuronidase activity, leading to accumulation of incompletely degraded heparan, dermatan and chondroitin sulfate glycosaminoglycans. Patients with MPS VII exhibit progressive spinal deformity, which decreases quality of life. Previously, we demonstrated that MPS VII dogs exhibit impaired initiation of secondary ossification in the vertebrae and long bones. The objective of this study was to build on these findings and comprehensively characterize how vertebral bone disease manifests progressively in MPS VII dogs throughout postnatal growth. Vertebrae were collected postmortem from MPS VII and healthy control dogs at seven ages ranging from 9 to 365 days. Microcomputed tomography and histology were used to characterize bone properties in primary and secondary ossification centers. Serum was analyzed for bone turnover biomarkers. Results demonstrated that not only was secondary ossification delayed in MPS VII vertebrae, but that it progressed aberrantly and was markedly diminished even at 365 days-of-age. Within primary ossification centers, bone volume fraction and bone mineral density were significantly lower in MPS VII at 180 and 365 days-of-age. MPS VII growth plates exhibited significantly lower proliferative and hypertrophic zone cellularity at 90 days-of-age, while serum bone-specific alkaline phosphatase (BAP) was significantly lower in MPS VII dogs at 180 days-of-age. Overall, these findings establish that vertebral bone formation is significantly diminished in MPS VII dogs in both primary and secondary ossification centers during postnatal growth.
    Keywords:  Biomarker; Canine; Growth plate; Lysosomal storage disease; Mucopolysaccharidosis; Spine
    DOI:  https://doi.org/10.1016/j.ymgme.2021.06.005
  27. Neuropathol Appl Neurobiol. 2021 Jun 25.
      AIMS: To evaluate if the myelin pathology observed in epilepsy-associated focal cortical dysplasia type 2B (FCD2B) and - histologically indistinguishable - cortical tubers of tuberous sclerosis complex (TSC) is primarily related to the underlying malformation or constitutes a secondary phenomenon due to the toxic microenvironment created by epileptic seizures. To investigate the possible beneficial effect of the mTOR pathway regulator everolimus on white matter pathology.METHODS: Primary mixed glial cell cultures derived from epilepsy surgery specimens of one TSC and seven FCD2B patients were grown on polycaprolactone fibre matrices and analysed using immunofluorescence and electron microscopy. Unaffected white matter from three age-matched epilepsy patients with mild malformations of cortical development (mMCD) and one with FCD3D served as controls. Additionally, TSC2 knock-out was performed using an oligodendroglial cell line. Myelination capacities of nanofibre grown cells in an inflammatory environment after mTOR-inhibitor treatment with everolimus was further investigated.
    RESULTS: Reduced oligodendroglial turnover, directly related to a lower myelin content was found in the patients´ primary cells. In our culture model of myelination dynamics, primary cells grown under "inflammatory condition" showed decreased myelination, that was repaired by treatment with everolimus.
    CONCLUSIONS: Results obtained in patient-derived primary oligodendroglial and TSC2 knock-out cells suggest that maturation of oligodendroglia and production of a proper myelin sheath seem to be impaired as a result of mTOR pathway disturbance. Hence, oligodendroglial pathology may reflect a more direct effect of the abnormal genetic program rather than to be an inactive bystander of chronic epilepsy.
    Keywords:  Focal cortical dysplasia 2B; myelination; nanofibres; oligodendrocyte; tuberous sclerosis complex
    DOI:  https://doi.org/10.1111/nan.12744
  28. Glia. 2021 Jun 22.
      Multiple signals are involved in the regulation of developmental myelination by Schwann cells and in the maintenance of a normal myelin homeostasis throughout adult life, preserving the integrity of the axons in the PNS. Recent studies suggest that Mek/ERK1/2-MAPK and PI3K/Akt/mTOR intracellular signaling pathways play important, often overlapping roles in the regulation of myelination in the PNS. In addition, hyperactivation of these signaling pathways in Schwann cells leads to a late onset of various pathological changes in the sciatic nerves. However, it remains poorly understood whether these pathways function independently or sequentially or converge using a common mechanism to facilitate Schwann cell differentiation and myelin growth during development and in causing pathological changes in the adult animals. To address these questions, we analyzed multiple genetically modified mice using simultaneous loss- and constitutive gain-of-function approaches. We found that during development, the Mek/ERK1/2-MAPK pathway plays a primary role in Schwann cell differentiation, distinct from mTOR. However, during active myelination, ERK1/2 is dependent on mTOR signaling to drive the growth of the myelin sheath and regulate its thickness. Finally, our data suggest that peripheral nerve pathology during adulthood caused by hyperactivation of Mek/ERK1/2-MAPK or PI3K is likely to be independent or dependent on mTOR-signaling in different contexts. Thus, this study highlights the complexities in the roles played by two major intracellular signaling pathways in Schwann cells that affect their differentiation, myelination, and later PNS pathology and predicts that potential therapeutic modulation of these pathways in PNS neuropathies could be a complex process.
    Keywords:  Schwann cells; differentiation; myelin; myelination
    DOI:  https://doi.org/10.1002/glia.24049
  29. Dis Model Mech. 2021 Jun 23. pii: dmm.048603. [Epub ahead of print]
      Valosin containing protein (VCP) is a hexameric type II AAA ATPase required for several cellular processes including ER-associated degradation, organelle biogenesis, autophagy and membrane fusion. VCP contains three domains: a regulatory N-terminal domain and two ATPase domains (D1 and D2). Mutations in the N-terminal and D1 domains are associated with several degenerative diseases, including Multisystem Proteinopathy (MSP-1) and ALS. However, patients with VCP mutations vary widely in their pathology and clinical penetrance, making it difficult to devise effective treatment strategies. Having a deeper understanding of how each mutation affects VCP function could enhance the prediction of clinical outcomes and design of personalized treatment options. Over-expressing VCP patient mutations in Drosophila has been shown to mimic many pathologies observed in human patients. The power of a genetically tractable model organism coupled with well-established in vivo assays and a relatively short life cycle make Drosophila an attractive system to study VCP disease pathogenesis and novel treatment strategies. Using CRISPR/Cas9, we have generated individual Drosophila knock-in mutants that include nine hereditary VCP disease mutations. We validate that these models display many hallmarks of VCP-mediated degeneration, including progressive decline in mobility, protein aggregate accumulation and defects in lysosomal and mitochondrial function. We also made some novel and unexpected findings, including laminopathies and sex-specific phenotypic differences in several mutants. Taken together, the Drosophila VCP disease models we have generated in this study will be useful for studying the etiology of individual VCP patient mutations and for testing potential genetic and/or pharmacological therapies.
    Keywords:  Drosophila; IBMPFD; Lysosomes; Ter94; VCP; mitochondria
    DOI:  https://doi.org/10.1242/dmm.048603
  30. Mol Biol Cell. 2021 Jun 23. mbcE20110695
      Lipid droplets (LDs) are dynamic organelles for lipid storage and homeostasis. Cells respond to metabolic changes by regulating the spatial distribution of LDs and enzymes required for LD growth and turnover. The small size of LDs precludes the observation of their associated enzyme densities and dynamics with conventional fluorescence microscopy. Here, we employ quantitative photo-activated localization microscopy to study the density of the fatty acid activating enzyme Faa4 on LDs in live yeast cells with single-molecule sensitivity and 30 nm resolution. During the log phase LDs co-localize with the Endoplasmic Reticulum (ER) where their emergence and expansion is mediated by the highest observed Faa4 densities. During transition to the stationary phase LDs with a ∼2-fold increased surface area translocate to the vacuolar surface and lumen and exhibit a ∼2.5-fold increase in Faa4 density. The increased Faa4 density on LDs further suggests its role in LD expansion, is caused by its ∼5-fold increased expression level and is specific to exogenous fatty acid chain-lengths. When lipolysis is induced by refreshed medium, Faa4 shuttles through ER- and lipophagy to the vacuole, where it may activate fatty acids for membrane expansion and degrade to reset cellular Faa4 abundance to levels in the log phase. [Media: see text] [Media: see text] [Media: see text] [Media: see text].
    DOI:  https://doi.org/10.1091/mbc.E20-11-0695
  31. Dev Cell. 2021 Jun 24. pii: S1534-5807(21)00481-0. [Epub ahead of print]
      Mitochondria are critical metabolic and signaling hubs, and dysregulated mitochondrial homeostasis is implicated in many diseases. Degradation of damaged mitochondria by selective GABARAP/LC3-dependent macro-autophagy (mitophagy) is critical for maintaining mitochondrial homeostasis. To identify alternate forms of mitochondrial quality control that functionally compensate if mitophagy is inactive, we selected for autophagy-dependent cancer cells that survived loss of LC3-dependent autophagosome formation caused by inactivation of ATG7 or RB1CC1/FIP200. We discovered rare surviving autophagy-deficient clones that adapted to maintain mitochondrial homeostasis after gene inactivation and identified two enhanced mechanisms affecting mitochondria including mitochondrial dynamics and mitochondrial-derived vesicles (MDVs). To further understand these mechanisms, we quantified MDVs via flow cytometry and confirmed an SNX9-mediated mechanism necessary for flux of MDVs to lysosomes. We show that the autophagy-dependent cells acquire unique dependencies on these processes, indicating that these alternate forms of mitochondrial homeostasis compensate for loss of autophagy to maintain mitochondrial health.
    Keywords:  ATG7; FIP200; SNX9; autophagy; cancer; late endosomes; mitochondria; mitochondrial dynamics; mitochondrial-derived vesicles; mitophagy
    DOI:  https://doi.org/10.1016/j.devcel.2021.06.003
  32. Cell Rep. 2021 Jun 22. pii: S2211-1247(21)00644-6. [Epub ahead of print]35(12): 109277
      The activity of the SMN complex in promoting the assembly of pre-mRNA processing UsnRNPs correlates with condensation of the complex in nuclear Cajal bodies. While mechanistic details of its activity have been elucidated, the molecular basis for condensation remains unclear. High SMN complex phosphorylation suggests extensive regulation. Here, we report on systematic siRNA-based screening for modulators of the capacity of SMN to condense in Cajal bodies and identify mTOR and ribosomal protein S6 kinase β-1 as key regulators. Proteomic analysis reveals TOR-dependent phosphorylations in SMN complex subunits. Using stably expressed or optogenetically controlled phospho mutants, we demonstrate that serine 49 and 63 phosphorylation of human SMN controls the capacity of the complex to condense in Cajal bodies via liquid-liquid phase separation. Our findings link SMN complex condensation and UsnRNP biogenesis to cellular energy levels and suggest modulation of TOR signaling as a rational concept for therapy of the SMN-linked neuromuscular disorder spinal muscular atrophy.
    Keywords:  Cajal body; LLPS; SMA; SMN; assembly of ribonucleoprotein complexes; mTOR; optogenetics; phase separation; ribosomal protein S6-kinase β-1 (RPS6KB1); snRNP
    DOI:  https://doi.org/10.1016/j.celrep.2021.109277
  33. Nat Commun. 2021 06 21. 12(1): 3818
      Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 μM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19.
    DOI:  https://doi.org/10.1038/s41467-021-24007-w