bims-lysosi Biomed News
on Lysosomes and signaling
Issue of 2021–05–30
thirty-six papers selected by
Stephanie Fernandes, Max Planck Institute for Biology of Ageing



  1. J Cell Biol. 2021 Aug 02. pii: e202007061. [Epub ahead of print]220(8):
      The effectors of the Rab7 small GTPase play multiple roles in Rab7-dependent endosome-lysosome and autophagy-lysosome pathways. However, it is largely unknown how distinct Rab7 effectors coordinate to maintain the homeostasis of late endosomes and lysosomes to ensure appropriate endolysosomal and autolysosomal degradation. Here we report that WDR91, a Rab7 effector required for early-to-late endosome conversion, is essential for lysosome function and homeostasis. Mice lacking Wdr91 specifically in the central nervous system exhibited behavioral defects and marked neuronal loss in the cerebral and cerebellar cortices. At the cellular level, WDR91 deficiency causes PtdIns3P-independent enlargement and dysfunction of lysosomes, leading to accumulation of autophagic cargoes in mouse neurons. WDR91 competes with the VPS41 subunit of the HOPS complex, another Rab7 effector, for binding to Rab7, thereby facilitating Rab7-dependent lysosome fusion in a controlled manner. WDR91 thus maintains an appropriate level of lysosome fusion to guard the normal function and survival of neurons.
    DOI:  https://doi.org/10.1083/jcb.202007061
  2. J Cell Sci. 2021 May 15. pii: jcs255463. [Epub ahead of print]134(10):
      To provide insights into the kiss-and-run and full fusion events resulting in endocytic delivery to lysosomes, we investigated conditions causing increased tethering and pore formation between late endocytic organelles in HeLa cells. Knockout of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) VAMP7 and VAMP8 showed, by electron microscopy, the accumulation of tethered lysosome-associated membrane protein (LAMP)-carrier vesicles around multivesicular bodies, as well as the appearance of 'hourglass' profiles of late endocytic organelles attached by filamentous tethers, but did not prevent endocytic delivery to lysosomal hydrolases. Subsequent depletion of the SNARE YKT6 reduced this delivery, consistent with it compensating for the absence of VAMP7 and VAMP8. We also investigated filamentous tethering between multivesicular bodies and enlarged endolysosomes following depletion of charged multi-vesicular body protein 6 (CHMP6), and provide the first evidence that pore formation commences at the edge of tether arrays, with pore expansion required for full membrane fusion.
    Keywords:  Endosome; Lysosome; Membrane fusion
    DOI:  https://doi.org/10.1242/jcs.255463
  3. EMBO Rep. 2021 May 27. e53232
      Lowe syndrome is a rare, developmental disorder caused by mutations in the phosphatase, OCRL. A study in this issue of EMBO Reports shows that OCRL is required for microtubule nucleation and that mutations in this protein lead to an inability to activate mTORC1 signaling and consequent cell proliferation in the presence of nutrients. These defects are the result of impaired microtubule-dependent lysosomal trafficking to the cell periphery and are independent of OCRL phosphatase activity.
    DOI:  https://doi.org/10.15252/embr.202153232
  4. J Biol Chem. 2021 May 20. pii: S0021-9258(21)00608-6. [Epub ahead of print] 100813
      Niemann-Pick C (NPC) is an autosomal recessive disorder characterized by mutations in the NPC1 or NPC2 genes encoding endo-lysosomal lipid transport proteins, leading to cholesterol accumulation and autophagy dysfunction. We have previously shown that enrichment of NPC1-deficient cells with the anionic lipid lysobisphosphatidic acid (LBPA; also called bis(monoacylglycerol)phosphate, BMP) via treatment with its precursor phosphatidylglycerol (PG) results in a dramatic decrease in cholesterol storage. However, the mechanisms underlying this reduction are unknown. In the present study, we showed using biochemical and imaging approaches in both NPC1-deficient cellular models and an NPC1 mouse model that PG incubation/LBPA enrichment significantly improved the compromised autophagic flux associated with NPC1 disease, providing a route for NPC1-independent endo-lysosomal cholesterol mobilization. PG/LBPA enrichment specifically enhanced the late stages of autophagy, and effects were mediated by activation of the lysosomal enzyme acid sphingomyelinase (ASM). PG incubation also led to robust and specific increases in LBPA species with polyunsaturated acyl chains, potentially increasing the propensity for membrane fusion events, which are critical for late-stage autophagy progression. Finally, we demonstrated that PG/LBPA treatment efficiently cleared cholesterol and toxic protein aggregates in Purkinje neurons of the NPC1I1061T mouse model. Collectively, these findings provide a mechanistic basis supporting cellular LBPA as a potential new target for therapeutic intervention in NPC disease.
    Keywords:  Niemann-Pick type C disease; acid sphingomyelinase; autophagy; cholesterol; lysobisphosphatidic acid
    DOI:  https://doi.org/10.1016/j.jbc.2021.100813
  5. Neuropathol Appl Neurobiol. 2021 May 28.
       AIMS: Neuronal cytoplasmic inclusions of TDP-43 are a pathological hallmark of diverse neurodegenerative disorders, yet the processes that mediate their formation and their functional significance remain incompletely understood. Both dysfunction in autophagy and neuroinflammation have been linked to TDP-43 mislocalisation. Here, we investigate TDP-43 proteinopathy in Niemann-Pick type C disease (NPC), an autosomal recessive lysosomal storage disease (LSD) distinguished by the accumulation of unesterified cholesterol within late endosomes and lysosomes. NPC is characterized by neurodegeneration, neuroinflammation and multifocal disruption of the autophagy pathway.
    METHODS: We utilized immunohistochemistry, confocal microscopy, electron microscopy, and biochemical and gene expression studies to characterize TDP-43 pathology and autophagic substrate accumulation in Npc1 deficient mice.
    RESULTS: In the NPC brain, cytoplasmic TDP-43 mislocalisation was independent of autophagic substrate accumulation. These pathologies occurred in distinct neuronal subtypes, as brainstem cholinergic neurons were more susceptible to TDP-43 mislocalisation while glutamatergic neurons exhibited hallmarks of autophagic dysfunction. Furthermore, TDP-43 mislocalisation did not co-localise with markers of stress granules or progress to ubiquitinated aggregates over months in vivo, indicating a stable, early stage in the aggregation process. Neither microgliosis nor neuroinflammation were sufficient to drive TDP-43 proteinopathy in the NPC brain. Notably, cytoplasmic TDP-43 co-localised with the nuclear import factor importin α, and TDP-43 mislocalised neurons demonstrated nuclear membrane abnormalities and disruption of nucleocytoplasmic transport.
    CONCLUSION: Our findings highlight the relationship between LSDs and TDP-43 proteinopathy, define its functional importance in NPC by triggering nuclear dysfunction, and expand the spectrum of TDP-43 pathology in the diseased brain.
    Keywords:  Niemann-Pick type C; TDP-43; autophagy; lysosomal diseases; nucleocytoplasmic transport
    DOI:  https://doi.org/10.1111/nan.12738
  6. Autophagy. 2021 May 24. 1-22
      Current disease-modifying therapies for Huntington disease (HD) focus on lowering mutant HTT (huntingtin; mHTT) levels, and the immunosuppressant drug rapamycin is an intriguing therapeutic for aging and neurological disorders. Rapamycin interacts with FKBP1A/FKBP12 and FKBP5/FKBP51, inhibiting the MTORC1 complex and increasing cellular clearance mechanisms. Whether the levels of FKBP (FK506 binding protein) family members are altered in HD models and if these proteins are potential therapeutic targets for HD have not been investigated. Here, we found levels of FKBP5 are significantly reduced in HD R6/2 and zQ175 mouse models and human HD isogenic neural stem cells and medium spiny neurons derived from induced pluripotent stem cells. Moreover, FKBP5 interacts and colocalizes with HTT in the striatum and cortex of zQ175 mice and controls. Importantly, when we decreased FKBP5 levels or activity by genetic or pharmacological approaches, we observed reduced levels of mHTT in our isogenic human HD stem cell model. Decreasing FKBP5 levels by siRNA or pharmacological inhibition increased LC3-II levels and macroautophagic/autophagic flux, suggesting autophagic cellular clearance mechanisms are responsible for mHTT lowering. Unlike rapamycin, the effect of pharmacological inhibition with SAFit2, an inhibitor of FKBP5, is MTOR independent. Further, in vivo treatment for 2 weeks with SAFit2, results in reduced HTT levels in both HD R6/2 and zQ175 mouse models. Our studies establish FKBP5 as a protein involved in the pathogenesis of HD and identify FKBP5 as a potential therapeutic target for HD.Abbreviations : ACTB/β-actin: actin beta; AD: Alzheimer disease; BafA1: bafilomycin A1; BCA: bicinchoninic acid; BBB: blood brain barrier; BSA: bovine serum albumin; CoIP: co-immunoprecipitation; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; FKBPs: FK506 binding proteins; HD: Huntington disease; HTT: huntingtin; iPSC: induced pluripotent stem cells; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MAPT/tau: microtubule associated protein tau; MES: 2-ethanesulfonic acid; MOPS: 3-(N-morphorlino)propanesulfonic acid); MSN: medium spiny neurons; mHTT: mutant huntingtin; MTOR: mechanistic target of rapamycin kinase; NSC: neural stem cells; ON: overnight; PD: Parkinson disease; PPIase: peptidyl-prolyl cis/trans-isomerases; polyQ: polyglutamine; PPP1R1B/DARPP-32: protein phosphatase 1 regulatory inhibitor subunit 1B; PTSD: post-traumatic stress disorder; RT: room temperature; SQSTM1/p62: sequestosome 1; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TBST:Tris-buffered saline, 0.1% Tween 20; TUBA: tubulin; ULK1: unc-51 like autophagy activating kinase 1; VCL: vinculin; WT: littermate controls.
    Keywords:  Autophagy; Huntington disease; SAFit2; fkbp12.6/fkbp1b; fkbp12/fkbp1a; fkbp51/fkbp5; fkbp52/fkbp4; induced pluripotent stem cells
    DOI:  https://doi.org/10.1080/15548627.2021.1904489
  7. Methods Mol Biol. 2021 ;2322 47-52
      Glucocerebrosidase (GCase), which is encoded by the GBA1 gene, has lysosomal glycoside hydrolase activity that hydrolyzes glucosylceramide. Defects in GCase lead to the accumulation of glucosylceramide, which causes the development of the lysosomal storage disease known as Gaucher's disease. Loss-of-function mutations in the GBA1 gene are the most important genetic risk factor for synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies. Recent studies on PD genes associated with lysosomal function suggest that GCase activity is decreased in cell models of PD and in neurons derived from PD patients. In this chapter, we describe a protocol to measure GCase activity in cultured cells.
    Keywords:  GBA1; Gaucher’s disease; Glucocerebrosidase; Glucosylceramide; Lysosomal storage disorder; Lysosome; Synucleinopathies
    DOI:  https://doi.org/10.1007/978-1-0716-1495-2_5
  8. Methods Mol Biol. 2021 ;2322 63-72
      Leucine-rich repeat kinase 2 (LRRK2) is a causative gene product of autosomal-dominant Parkinson's disease and has been shown to play a role in lysosomal regulation. We have previously shown that endogenous LRRK2 recruited its substrates Rab8a and Rab10 onto overloaded lysosomes depending on their phosphorylation, which functioned in the suppression of lysosomal enlargement as well as the promotion of the exocytic release of lysosomal cathepsins. In this chapter, we introduce two methods to analyze cellular functions of LRRK2 upon exposure to lysosomal overload stress in RAW264.7 cells.
    Keywords:  Cathepsin; LRRK2; Lysosomes; Lysosomotropic agent; Rab
    DOI:  https://doi.org/10.1007/978-1-0716-1495-2_7
  9. Nucleic Acids Res. 2021 May 22. pii: gkab362. [Epub ahead of print]
      Appropriate regulation of the Integrated stress response (ISR) and mTORC1 signaling are central for cell adaptation to starvation for amino acids. Halofuginone (HF) is a potent inhibitor of aminoacylation of tRNAPro with broad biomedical applications. Here, we show that in addition to translational control directed by activation of the ISR by general control nonderepressible 2 (GCN2), HF increased free amino acids and directed translation of genes involved in protein biogenesis via sustained mTORC1 signaling. Deletion of GCN2 reduced cell survival to HF whereas pharmacological inhibition of mTORC1 afforded protection. HF treatment of mice synchronously activated the GCN2-mediated ISR and mTORC1 in liver whereas Gcn2-null mice allowed greater mTORC1 activation to HF, resulting in liver steatosis and cell death. We conclude that HF causes an amino acid imbalance that uniquely activates both GCN2 and mTORC1. Loss of GCN2 during HF creates a disconnect between metabolic state and need, triggering proteostasis collapse.
    DOI:  https://doi.org/10.1093/nar/gkab362
  10. Autophagy. 2021 May 26.
      The sensu stricto autophagy, macroautophagy, is considered to be both a metabolic process as well as a bona fide quality control process. The question as to how these two aspects of autophagy are coordinated and whether and why they overlap has implications for fundamental aspects, pathophysiological effects, and pharmacological manipulation of autophagy. At the top of the regulatory cascade controlling autophagy are master regulators of cellular metabolism, such as MTOR and AMPK, which render the system responsive to amino acid and glucose starvation. At the other end exists a variety of specific autophagy receptors, engaged in the selective removal of a diverse array of intracellular targets, from protein aggregates/condensates to whole organelles such as mitochondria, ER, peroxisomes, lysosomes and lipid droplets. Are the roles of autophagy in metabolism and quality control mutually exclusive, independent or interlocked? How are priorities established? What are the molecular links between both phenomena? This article will provide a starting point to formulate these questions, the responses to which should be taken into consideration in future autophagy-based interventions.
    Keywords:  AMPK; ATG; Aging; Akt; Alzheimer’s disease; ESCRT; FOXO; LC3; MTOR; NAD; NASH; Obesity; Parkinson’s Disease; RagA/B; SIRT1; SIRT3; Selective autophagy; TBK1; TCA; TFEB; Tor; acetyl CoA; autophagy; calcienurin; cancer; cardiovascular; diabetes; endoplasmic reticulum; fatty acids; ferritin; galectin; glycogen; glycolysis; heart; immunity; infection; insulin; lipid droplets; liver; lysosomes; metabolism; mitochondria; mitophagy; neurodegeneration; nutrition; oxidative phosphorylation; p62 SQSTM1; peroxisome; quality control; sirtuin
    DOI:  https://doi.org/10.1080/15548627.2021.1933742
  11. JCI Insight. 2021 May 25. pii: 149271. [Epub ahead of print]
      Fetal growth restriction, or low birthweight is a strong determinant for eventual obesity and Type 2 diabetes. Clinical studies suggest placental mechanistic target of rapamycin (mTOR) signaling regulate fetal birthweight and the metabolic health trajectory of the offspring. In the current study, we used genetic model with loss of placental mTOR function (mTORKOPlacenta) to test the direct role of mTOR signaling on birthweight and the metabolic health in the adult offspring. mTORKOPlacenta animals displayed reduced placental area and total weight, as well as fetal bodyweight at embryonic day (e) 17.5. Birthweight and serum insulin levels were reduced; however, β-cell mass was normal in mTORKOPlacenta newborns. Adult mTORKOPlacenta offspring, under a metabolic high-fat challenge, displayed exacerbated obesity and metabolic dysfunction compared to littermate controls. Subsequently, we tested whether enhancing placental mTOR complex 1 (mTORC1) signaling, via genetic ablation of TSC2, in utero would improve glucose homeostasis in the offspring. Indeed, increased placental mTORC1 conferred protection from a diet-induced obesity in the offspring. In conclusion, placental mTORC1 serves as a mechanistic link between placental function and programming of obesity and insulin resistance in the adult offspring.
    Keywords:  Diabetes; Endocrinology; Islet cells; Metabolism; Obesity
    DOI:  https://doi.org/10.1172/jci.insight.149271
  12. Mol Cell Oncol. 2021 Mar 25. 8(3): 1902250
      The rate-limiting enzyme of serine biosynthesis, 3-phosphoglycerate dehydrogenase (PHGDH), contributes to rapid growth and proliferation when it is overexpressed in cancer. We recently described the metabolic adaptations that occur upon PHGDH inhibition in osteosarcoma. PHGDH inhibition causes metabolite accumulation that activates the mechanistic target of rapamycin (mTOR) signaling, sensitizing osteosarcoma to non-rapalog mTOR inhibition.
    Keywords:  PHGDH; mTORC1; methotrexate; osteosarcoma; perhexiline; serine
    DOI:  https://doi.org/10.1080/23723556.2021.1902250
  13. Biochem Biophys Res Commun. 2021 May 20. pii: S0006-291X(21)00792-0. [Epub ahead of print]561 158-164
      Remodeling of vacuolar membranes mediated by endosomal sorting complex required for transport (ESCRT) is critical for microautophagy induction in budding yeast. Nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) protein kinase elicit recruitment of the ESCRT-0 complex (Vps27-Hse1) onto vacuolar membranes and ESCRT-mediated microautophagy induction. Mitotic protein phosphatase Cdc14 antagonizes TORC1-mediated phosphorylation in macroautophagy induction after nutrient starvation and TORC1 inactivation. Here, we report that Cdc14 downregulates microautophagy induction after TORC1 inactivation. Cdc14 dysfunction stimulated the vacuolar membrane recruitment of Hse1, but not Vps27, after TORC1 inactivation, promoting ESCRT-0 complex formation. Conversely, overexpression of CDC14 compromises Hse1 recruitment on vacuolar membranes and microautophagy induction after TORC1 inactivation. Thus, Cdc14 phosphatase regulates the fluxes of two types of autophagy in the opposite directions, namely, it elicits macroautophagy and attenuates microautophagy.
    Keywords:  Cdc14; ESCRT; Hse1; Microautophagy; TORC1; Vps27
    DOI:  https://doi.org/10.1016/j.bbrc.2021.05.021
  14. Biochem J. 2021 May 28. 478(10): 1959-1976
      Amphisomes are intermediate/hybrid organelles produced through the fusion of endosomes with autophagosomes within cells. Amphisome formation is an essential step during a sequential maturation process of autophagosomes before their ultimate fusion with lysosomes for cargo degradation. This process is highly regulated with multiple protein machineries, such as SNAREs, Rab GTPases, tethering complexes, and ESCRTs, are involved to facilitate autophagic flux to proceed. In neurons, autophagosomes are robustly generated in axonal terminals and then rapidly fuse with late endosomes to form amphisomes. This fusion event allows newly generated autophagosomes to gain retrograde transport motility and move toward the soma, where proteolytically active lysosomes are predominantly located. Amphisomes are not only the products of autophagosome maturation but also the intersection of the autophagy and endo-lysosomal pathways. Importantly, amphisomes can also participate in non-canonical functions, such as retrograde neurotrophic signaling or autophagy-based unconventional secretion by fusion with the plasma membrane. In this review, we provide an updated overview of the recent discoveries and advancements on the molecular and cellular mechanisms underlying amphisome biogenesis and the emerging roles of amphisomes. We discuss recent developments towards the understanding of amphisome regulation as well as the implications in the context of major neurodegenerative diseases, with a comparative focus on Alzheimer's disease and Parkinson's disease.
    Keywords:  amphisome; autophagy; late endosome; neurodegeneration; neurotrophic signaling; retrograde axonal transport
    DOI:  https://doi.org/10.1042/BCJ20200917
  15. Cancer Sci. 2021 May 29.
      Cancer cells utilize autophagy for their growth, survival, and cytoprotection from chemotherapy. Therefore, autophagy inhibitors appear to be good candidates for cancer treatment. Our group has previously reported that macrolide antibiotics, especially azithromycin (AZM), have potent autophagy inhibitory effects, and combination treatment with tyrosine kinase inhibitors or proteasome inhibitors enhances their anti-cancer activity. In this study, we evaluated the effect of combination therapy with DNA-damaging drugs and AZM in non-small-cell lung cancer (NSCLC) cells. We found that the cytotoxic activities of DNA-damaging drugs, such as doxorubicin (DOX), etoposide, and carboplatin, were enhanced in the presence of AZM in NSCLC cell lines, whereas AZM alone exhibited almost no cytotoxicity. This enhanced cell death was dependent on wild-type-p53 status and autophagosome forming ability because TP53 knockout (KO) and ATG5-KO cells attenuated AZM-enhanced cytotoxicity. DOX treatment upregulated lysosomal biogenesis by activating TFEB, and led to lysosomal membrane damage as assessed by galectin 3 puncta assay and cytoplasmic leakage of lysosomal enzymes. In contrast, AZM treatment blocked autophagy, which resulted in the accumulation of lysosomes/autolysosomes. Thus, the effects of DOX and AZM were integrated into the marked increase in damaged lysosomes/autolysosomes, leading to prominent lysosomal membrane permeabilization (LMP) for apoptosis induction. Our data suggest that concomitant treatment with DNA-damaging drugs and AZM appears to be a promising strategy for NSCLC treatment via pronounced LMP induction.
    Keywords:  autophagy; azithromycin; lysosomal membrane permeabilization; non-small-cell lung cancer; p53
    DOI:  https://doi.org/10.1111/cas.14992
  16. Curr Med Chem. 2021 May 26.
      Mutations in human genes might lead to loss of functional proteins, causing diseases. Among these genetic disorders, a large class is associated with the deficiency in metabolic enzymes, resulting in both an increase in the concentration of substrates and a loss in the metabolites produced by the catalyzed reactions. The identification of therapeutic actions based on small molecules represents a challenge to medicinal chemists because the target is missing. Alternative approaches are biology-based, ranging from gene and stem cell therapy, CRISPR/Cas9 technology, distinct types of RNAs, and enzyme replacement therapy (ERT). This review will focus on the latter approach that since the 1990s has been successfully applied to cure many rare diseases, most of them being lysosomal storage diseases or metabolic diseases. So far, a dozen enzymes have been approved by FDA/EMA for lysosome storage disorders and only a few for metabolic diseases. Enzymes for replacement therapy are mainly produced in mammalian cells and some in plant cells and yeasts and are further processed to obtain active, highly bioavailable, less degradable products. Issues still under investigation for the increase in ERT efficacy are the optimization of enzymes interaction with cell membrane and internalization, the reduction in immunogenicity, and the overcoming of blood-brain barrier limitations when neuronal cells need to be targeted. Overall, ERT has demonstrated its efficacy and safety in the treatment of many genetic rare diseases, both saving newborn lives and improving patients' life quality, and represents a very successful example of targeted biologics.
    Keywords:  biologics.; cell internalization; enzyme deficiency; genetic disease; lysosomal storage disorders; mannose 6-phosphate; metabolic diseases; recombinant proteins
    DOI:  https://doi.org/10.2174/0929867328666210526144654
  17. Nat Commun. 2021 May 24. 12(1): 3059
      Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease in the world, however, no drug treatment has been approved for this disease. Thus, it is urgent to find effective therapeutic targets for clinical intervention. In this study, we find that liver-specific knockout of PPDPF (PPDPF-LKO) leads to spontaneous fatty liver formation in a mouse model at 32 weeks of age on chow diets, which is enhanced by HFD. Mechanistic study reveals that PPDPF negatively regulates mTORC1-S6K-SREBP1 signaling. PPDPF interferes with the interaction between Raptor and CUL4B-DDB1, an E3 ligase complex, which prevents ubiquitination and activation of Raptor. Accordingly, liver-specific PPDPF overexpression effectively inhibits HFD-induced mTOR signaling activation and hepatic steatosis in mice. These results suggest that PPDPF is a regulator of mTORC1 signaling in lipid metabolism, and may be a potential therapeutic candidate for NAFLD.
    DOI:  https://doi.org/10.1038/s41467-021-23285-8
  18. J Cell Biol. 2021 Aug 02. pii: e202012104. [Epub ahead of print]220(8):
      The lysosome (or vacuole in fungi and plants) is an essential organelle for nutrient sensing and cellular homeostasis. In response to environmental stresses such as starvation, the yeast vacuole can adjust its membrane composition by selectively internalizing membrane proteins into the lumen for degradation. Regarding the selective internalization mechanism, two competing models have been proposed. One model suggests that the ESCRT machinery is responsible for the sorting. In contrast, the ESCRT-independent intralumenal fragment (ILF) pathway proposes that the fragment generated by homotypic vacuole fusion is responsible for the sorting. Here, we applied a microfluidics-based imaging method to capture the complete degradation process in vivo. Combining live-cell imaging with a synchronized ubiquitination system, we demonstrated that ILF cargoes are not degraded through intralumenal fragments. Instead, ESCRTs function on the vacuole membrane to sort them into the lumen for degradation. We further discussed challenges in reconstituting vacuole membrane protein degradation.
    DOI:  https://doi.org/10.1083/jcb.202012104
  19. Nat Commun. 2021 May 25. 12(1): 3140
      INPP4B suppresses PI3K/AKT signaling by converting PI(3,4)P2 to PI(3)P and INPP4B inactivation is common in triple-negative breast cancer. Paradoxically, INPP4B is also a reported oncogene in other cancers. How these opposing INPP4B roles relate to PI3K regulation is unclear. We report PIK3CA-mutant ER+ breast cancers exhibit increased INPP4B mRNA and protein expression and INPP4B increased the proliferation and tumor growth of PIK3CA-mutant ER+ breast cancer cells, despite suppression of AKT signaling. We used integrated proteomics, transcriptomics and imaging to demonstrate INPP4B localized to late endosomes via interaction with Rab7, which increased endosomal PI3Kα-dependent PI(3,4)P2 to PI(3)P conversion, late endosome/lysosome number and cargo trafficking, resulting in enhanced GSK3β lysosomal degradation and activation of Wnt/β-catenin signaling. Mechanistically, Wnt inhibition or depletion of the PI(3)P-effector, Hrs, reduced INPP4B-mediated cell proliferation and tumor growth. Therefore, INPP4B facilitates PI3Kα crosstalk with Wnt signaling in ER+ breast cancer via PI(3,4)P2 to PI(3)P conversion on late endosomes, suggesting these tumors may be targeted with combined PI3K and Wnt/β-catenin therapies.
    DOI:  https://doi.org/10.1038/s41467-021-23241-6
  20. PLoS Biol. 2021 May 26. 19(5): e3001279
      Hyperactivation of the mammalian target of rapamycin (mTOR) pathway can cause malformation of cortical development (MCD) with associated epilepsy and intellectual disability (ID) through a yet unknown mechanism. Here, we made use of the recently identified dominant-active mutation in Ras Homolog Enriched in Brain 1 (RHEB), RHEBp.P37L, to gain insight in the mechanism underlying the epilepsy caused by hyperactivation of the mTOR pathway. Focal expression of RHEBp.P37L in mouse somatosensory cortex (SScx) results in an MCD-like phenotype, with increased mTOR signaling, ectopic localization of neurons, and reliable generalized seizures. We show that in this model, the mTOR-dependent seizures are caused by enhanced axonal connectivity, causing hyperexcitability of distally connected neurons. Indeed, blocking axonal vesicle release from the RHEBp.P37L neurons alone completely stopped the seizures and normalized the hyperexcitability of the distally connected neurons. These results provide new evidence of the extent of anatomical and physiological abnormalities caused by mTOR hyperactivity, beyond local malformations, which can lead to generalized epilepsy.
    DOI:  https://doi.org/10.1371/journal.pbio.3001279
  21. Cell Mol Life Sci. 2021 May 27.
      Fatty acid synthase (FASN) participates in many fundamental biological processes, including energy storage and signal transduction, and is overexpressed in many cancer cells. We previously showed in a context of lipogenesis that FASN is protected from degradation by its interaction with O-GlcNAc transferase (OGT) in a nutrient-dependent manner. We and others also reported that OGT and O-GlcNAcylation up-regulate the PI3K/AKT/mTOR pathway that senses mitogenic signals and nutrient availability to drive cell cycle. Using biochemical and microscopy approaches, we show here that FASN co-localizes with OGT in the cytoplasm and, to a lesser extent, in the membrane fraction. This interaction occurs in a cell cycle-dependent manner, following the pattern of FASN expression. Moreover, we show that FASN expression depends on OGT upon serum stimulation. The level of FASN also correlates with the activation of the PI3K/AKT/mTOR pathway in hepatic cell lines, and in livers of obese mice and in a chronically activated insulin and mTOR signaling mouse model (PTEN-null mice). These results indicate that FASN is under a dual control of O-GlcNAcylation and mTOR pathways. In turn, blocking FASN with the small-molecule inhibitor C75 reduces both OGT and O-GlcNAcylation levels, and mTOR activation, highlighting a novel reciprocal regulation between these actors. In addition to the role of O-GlcNAcylation in tumorigenesis, our findings shed new light on how aberrant activity of FASN and mTOR signaling may promote the emergence of hepatic tumors.
    Keywords:  Cell proliferation; Ob/ob mice; Protein interactions; Proximity ligation assay; siRNA
    DOI:  https://doi.org/10.1007/s00018-021-03857-z
  22. FASEB J. 2021 Jun;35(6): e21641
      The bloodstream stage of Trypanosoma brucei, the causative agent of African trypanosomiasis, is characterized by its high rate of endocytosis, which is involved in remodeling of its surface coat. Here we present evidence that RNAi-mediated expression down-regulation of vacuolar protein sorting 41 (Vps41), a component of the homotypic fusion and vacuole protein sorting (HOPS) complex, leads to a strong inhibition of endocytosis, vesicle accumulation, enlargement of the flagellar pocket ("big eye" phenotype), and dramatic effect on cell growth. Unexpectedly, other functions described for Vps41 in mammalian cells and yeasts, such as delivery of proteins to lysosomes, and lysosome-related organelles (acidocalcisomes) were unaffected, indicating that in trypanosomes post-Golgi trafficking is distinct from that of mammalian cells and yeasts. The essentiality of TbVps41 suggests that it is a potential drug target.
    Keywords:   Trypanosoma brucei ; HOPS; Vps41; acidocalcisome; endocytosis; lysosome
    DOI:  https://doi.org/10.1096/fj.202100487R
  23. Mol Cell Oncol. 2021 ;8(3): 1919006
      Ferroptosis is a cell death mechanism triggered by lipid peroxidation. Our recent study linked cyst(e)ine availability with glutathione peroxidase 4 (GPX4) protein synthesis and ferroptosis mitigation via a Rag-mechanistic target of rapamycin complex 1 (mTORC1) axis, and proposed that co-targeting mTORC1 and ferroptosis is a promising strategy for cancer therapy.
    Keywords:  GPX4; SLC7A11; cancer therapy; cysteine; cystine; ferroptosis; lipid peroxidation; mTORC1
    DOI:  https://doi.org/10.1080/23723556.2021.1919006
  24. Front Mol Neurosci. 2021 ;14 618360
      Mucopolysaccharidosis type I (MPS I) is an inherited metabolic disorder caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA). The two current treatments [hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT)], are insufficiently effective in addressing neurologic disease, in part due to the inability of lysosomal enzyme to cross the blood brain barrier. With a goal to more effectively treat neurologic disease, we have investigated the effectiveness of AAV-mediated IDUA gene delivery to the brain using several different routes of administration. Animals were treated by either direct intracerebroventricular (ICV) injection, by intrathecal (IT) infusion into the cerebrospinal fluid, or by intranasal (IN) instillation of AAV9-IDUA vector. AAV9-IDUA was administered to IDUA-deficient mice that were either immunosuppressed with cyclophosphamide (CP), or immunotolerized at birth by weekly injections of human iduronidase. In animals treated by ICV or IT administration, levels of IDUA enzyme ranged from 3- to 1000-fold that of wild type levels in all parts of the microdissected brain. In animals administered vector intranasally, enzyme levels were 100-fold that of wild type in the olfactory bulb, but enzyme expression was close to wild type levels in other parts of the brain. Glycosaminoglycan levels were reduced to normal in ICV and IT treated mice, and in IN treated mice they were normalized in the olfactory bulb, or reduced in other parts of the brain. Immunohistochemical analysis showed extensive IDUA expression in all parts of the brain of ICV treated mice, while IT treated animals showed transduction that was primarily restricted to the hind brain with some sporadic labeling seen in the mid- and fore brain. At 6 months of age, animals were tested for spatial navigation, memory, and neurocognitive function in the Barnes maze; all treated animals were indistinguishable from normal heterozygous control animals, while untreated IDUA deficient animals exhibited significant learning and spatial navigation deficits. We conclude that IT and IN routes are acceptable and alternate routes of administration, respectively, of AAV vector delivery to the brain with effective IDUA expression, while all three routes of administration prevent the emergence of neurocognitive deficiency in a mouse MPS I model.
    Keywords:  AAV9; IDUA; MPS I; gene therapy; intracerebroventricular administration; intranasal infusion; intrathecal injection
    DOI:  https://doi.org/10.3389/fnmol.2021.618360
  25. Mol Cell Oncol. 2021 ;8(3): 1896348
      mTORC1 integrates diverse upstream signals to control cell growth and metabolism. We previously showed that mTORC1 activity is spatially compartmentalized to ensure its signaling specificity. In a recently published study, we demonstrated the existence of mTORC1 activity in the nucleus and identified a unique mode of its regulation in the nuclear compartment.
    Keywords:  RAPTOR; nuclear translocation; protein kinase; signaling specificity; spatial compartmentalization
    DOI:  https://doi.org/10.1080/23723556.2021.1896348
  26. Biochem Biophys Res Commun. 2021 May 20. pii: S0006-291X(21)00778-6. [Epub ahead of print]561 151-157
      Rab small GTPases regulate intracellular membrane trafficking by interacting with specific binding proteins called Rab effectors. Although Rab6 is implicated in basement membrane formation and secretory cargo trafficking, its precise regulatory mechanisms have remained largely unknown. In the present study we established five knockout cell lines for candidate Rab6 effectors and discovered that knockout of VPS52, a subunit of the GARP complex, resulted in attenuated secretion and lysosomal accumulation of secretory cargos, the same as Rab6-knockout does. We also evaluated the functional importance of the previously uncharacterized C-terminal region of VPS52 for restoring these phenotypes, as well as for the sorting of lysosomal proteins. Our findings suggest that VPS52 is an effector protein that is responsible for the Rab6-dependent secretory cargo trafficking.
    Keywords:  GARP complex; Membrane trafficking; Rab GTPase; Secretory pathway
    DOI:  https://doi.org/10.1016/j.bbrc.2021.05.009
  27. Front Immunol. 2021 ;12 637778
      Efferocytosis is critical for tissue homeostasis, as its deregulation is associated with several autoimmune pathologies. While engulfing apoptotic cells, phagocytes activate transcription factors, such as peroxisome proliferator-activated receptors (PPAR) or liver X receptors (LXR) that orchestrate metabolic, phagocytic, and inflammatory responses towards the ingested material. Coordination of these transcription factors in efferocytotic human macrophages is not fully understood. In this study, we evaluated the transcriptional profile of macrophages following the uptake of apoptotic Jurkat T cells using RNA-seq analysis. Results indicated upregulation of PPAR and LXR pathways but downregulation of sterol regulatory element-binding proteins (SREBP) target genes. Pharmacological inhibition and RNA interference pointed to LXR and PPARδ as relevant transcriptional regulators, while PPARγ did not substantially contribute to gene regulation. Mechanistically, lysosomal digestion and lysosomal acid lipase (LIPA) were required for PPAR and LXR activation, while PPARδ activation also demanded an active lysosomal phospholipase A2 (PLA2G15). Pharmacological interference with LXR signaling attenuated ABCA1-dependent cholesterol efflux from efferocytotic macrophages, but suppression of inflammatory responses following efferocytosis occurred independently of LXR and PPARδ. These data provide mechanistic details on LXR and PPARδ activation in efferocytotic human macrophages.
    Keywords:  apoptosis; efferocytosis; liver X receptor; macrophages; peroxisome proliferator-activated receptor
    DOI:  https://doi.org/10.3389/fimmu.2021.637778
  28. Autophagy. 2021 May 26. 1-15
      Aberrant chaperone-mediated autophagy (CMA) activation has been suggested as a tumorigenesis-promoting event in various cancers, although its roles in prostate cancer (PCa) remain elusive. Emerging evidence indicates that TPD52 isoform 1, a prostate-specific and androgen-responsive gene, contributes to the malignant progression of PCa. Here, we demonstrate that TPD52 enhances CMA activation by interacting with HSPA8/HSC70 and enhancing substrate degradation in PCa. Elevation of TPD52 is essential for CMA-induced PCa cell proliferation and stress resistance in vitro and in vivo. Furthermore, TPD52 is acetylated by KAT2B at K163, which is a process that can be antagonized by HDAC2. Inactivation of HDAC2 results in elevated TPD52 acetylation, which compromises the interaction between TPD52 and HSPA8, leading to impaired CMA function and tumor growth in vivo. Taken together, our findings reveal that acetylation-dependent regulation of TPD52 modulates CMA oncogenic function in PCa, thereby suggesting the possibility of targeting the TPD52-mediated CMA pathway to control the progression of PCa.Abbreviations: CMA: chaperone-mediated autophagy; HDAC2: histone deacetylase 2; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; KAT2B: lysine acetyltransferase 2B; LAMP2A: lysosomal associated membrane protein 2A; PCa: prostate cancer; TPD52: tumor protein D52.
    Keywords:  Chaperone-mediated autophagy; HDAC2; HSPA8; KAT2B; TPD52 isoform 1; prostate cancer
    DOI:  https://doi.org/10.1080/15548627.2021.1917130
  29. Nat Commun. 2021 May 24. 12(1): 3055
      Triple negative breast cancer (TNBC) patients exhibit poor survival outcomes and lack effective targeted therapies. Using unbiased in vivo genome-wide CRISPR screening, we interrogated cancer vulnerabilities in TNBC and identified an interplay between oncogenic and tumor suppressor pathways. This study reveals tumor regulatory functions for essential components of the mTOR and Hippo pathways in TNBC. Using in vitro drug matrix synergy models and in vivo patient-derived xenografts, we further establish the therapeutic relevance of our findings and show that pharmacological inhibition of mTORC1/2 and oncoprotein YAP efficiently reduces tumorigenesis in TNBC. At the molecular level, we find that while verteporfin-induced YAP inhibition leads to apoptosis, torin1-mediated mTORC1/2 inhibition promotes macropinocytosis. Torin1-induced macropinocytosis further facilitates verteporfin uptake, thereby greatly enhancing its pro-apoptotic effects in cancer cells. Overall, our study underscores the power and robustness of in vivo CRISPR genome-wide screens in identifying clinically relevant and innovative therapeutic modalities in cancer.
    DOI:  https://doi.org/10.1038/s41467-021-23316-4
  30. Front Microbiol. 2021 ;12 667807
      Phagolysosomes of macrophages are the niche where the parasitic protozoan Leishmania resides and causes human leishmaniasis. During infection, this organism encounters dramatic environmental changes. These include heat shock (from 26°C in the vector to 33°C or 37°C in the host, for cutaneous and visceral species, respectively) and acidic pH typical to the lysosome and nutrient availability. Leishmania cells developed ways to sense the lysosome-specific environment (acidic pH and body temperature) as means of recognition and, subsequently, initiation of differentiation into the intracellular form. Recent studies have indicated that protein kinase A plays a role as the gatekeeper that enables differentiation initiation. This review provides an update on the lysosome signaling pathway-mediated Leishmania intracellular development.
    Keywords:  Leishmania; development; differentiation; macrophages; sensing
    DOI:  https://doi.org/10.3389/fmicb.2021.667807
  31. Redox Biol. 2021 Jul;pii: S2213-2317(21)00171-3. [Epub ahead of print]43 102013
      The nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome in podocytes has been implicated in the initiation of glomerular inflammation during hyperhomocysteinemia (hHcy). However, the mechanism by which NLRP3 inflammasome products are released from podocytes remains unknown. The present study tested whether exosome secretion from podocytes is enhanced by NADPH oxidase-produced reactive oxygen species (ROS), which may serve as a pathogenic mechanism mediating the release of inflammatory cytokines produced by the NLRP3 inflammasome in podocytes after Hcy stimulation. We first demonstrated the remarkable elevation of endogenously produced ROS in podocytes treated with Hcy compared with control podocytes, which was abolished by pre-treatment with the NADPH oxidase inhibitors, gp91 ds-tat peptide and diphenyleneiodonium (DPI). In addition, Hcy induced activation in podocytes of NLRP3 inflammasomes and the formation of multivesicular bodies (MVBs) containing inflammatory cytokines, which were prevented by treatment with gp91 ds-tat or the ROS scavenger, catalase. Given the importance of the transient receptor potential mucolipin 1 (TRPML1) channel in Ca2+-dependent lysosome trafficking and consequent lysosome-MVB interaction, we tested whether lysosomal Ca2+ release through TRPML1 channels is inhibited by endogenously produced ROS in podocytes after Hcy stimulation. By GCaMP3 Ca2+ imaging, we confirmed the inhibition of TRPML1 channel activity by Hcy which was remarkably ameliorated by catalase and gp91 ds-tat peptide. By structured illumination microscopy (SIM) and nanoparticle tracking analysis (NTA), we found that ML-SA1, a TRPML1 channel agonist, significantly enhanced lysosome-MVB interaction and reduced exosome release in podocytes, which were attenuated by Hcy. Pre-treatment of podocytes with catalase or gp91 ds-tat peptide restored ML-SA1-induced changes in lysosome-MVB interaction and exosome secretion. Moreover, we found that hydrogen peroxide (H2O2) mimicked the effect of Hcy on TRPML1 channel activity, lysosome-MVB interaction, and exosome secretion in podocytes. Based on these results, we conclude that endogenously produced ROS importantly contributes to inflammatory exosome secretion from podocytes through inhibition of TRPML1 channel activity, which may contribute to the initiation of glomerular inflammation during hHcy.
    Keywords:  Exosome; Homocysteine; Lysosome; Podocyte; Reactive oxygen species; TRPML1 channel
    DOI:  https://doi.org/10.1016/j.redox.2021.102013
  32. Contact (Thousand Oaks). 2021 Jan 01. 4 25152564211012246
      Membrane contact sites are formed by tether proteins that have the ability to bring two organellar membranes together. VAP proteins are a family of endoplasmic reticulum (ER)-resident tether proteins specialized in interacting with FFAT (two phenylalanines in an acidic tract) peptide motifs in other proteins. If the FFAT-motif-containing proteins reside on other organelles, VAP proteins form contact sites between these organelles and the ER. The role of VAPA and VAPB, the two founding members of the VAP family in recruiting proteins to the ER and forming membrane contact sites is well appreciated as numerous interaction partners of VAPA and VAPB at different intracellular contact sites have been characterized. Recently, three new proteins -MOSPD1, MOSPD2 and MOSPD3-have been added to the VAP family. While MOSPD2 has a motif preference similar to VAPA and VAPB, MOSPD1 and MOSPD3 prefer to interact with proteins containing FFNT (two phenylalanines in a neutral tract) motifs. In this review, we discuss the recent advances in motif binding by VAP proteins along with the other biological processes VAP proteins are involved in.
    Keywords:  FFAT; FFNT; MOSPD; VAP; endoplasmic reticulum; membrane contact sites
    DOI:  https://doi.org/10.1177/25152564211012246
  33. J Mol Cell Biol. 2021 May 28. pii: mjab032. [Epub ahead of print]
      The endoplasmic reticulum (ER) is a contiguous and complicated membrane network in eukaryotic cells, and membrane contact sites (MCSs) between the ER and other organelles perform vital cellular functions, including lipid homeostasis, metabolite exchange, calcium level regulation, and organelle division. Here, we establish a whole pipeline to reconstruct all ER, mitochondria, lipid droplets, lysosomes, peroxisomes, and nuclei by automated tape-collecting ultramicrotome scanning electron microscopy (ATUM-SEM) and deep learning techniques, which generates an unprecedented 3D model for mapping liver samples. Furthermore, the morphology of various organelles and the MCSs between the ER and other organelles are systematically analyzed. We found that the ER presents with predominantly flat cisternae and is knitted tightly all throughout the intracellular space and around other organelles. In addition, the ER has a smaller volume-to-membrane surface area ratio than other organelles, which suggests that the ER could be more suited for functions that require a large membrane surface area. Our data also indicate that ER‒mitochondria contacts are particularly abundant, especially for branched mitochondria. Our study provides 3D reconstructions of various organelles in liver samples together with important fundamental information for biochemical and functional studies in the liver.
    Keywords:  3D reconstruction; ATUM-SEM; ER; MCSs; deep learning; liver
    DOI:  https://doi.org/10.1093/jmcb/mjab032
  34. Elife. 2021 May 24. pii: e67709. [Epub ahead of print]10
      ESCRT-III polymerization is required for all endosomal sorting complex required for transport (ESCRT)-dependent events in the cell. However, the relative contributions of the eight ESCRT-III subunits differ between each process. The minimal features of ESCRT-III proteins necessary for function and the role for the multiple ESCRT-III subunits remain unclear. To identify essential features of ESCRT-III subunits, we previously studied the polymerization mechanisms of two ESCRT-III subunits Snf7 and Vps24, identifying the association of the helix-4 region of Snf7 with the helix-1 region of Vps24 (Banjade et al., 2019a). Here, we find that mutations in the helix-1 region of another ESCRT-III subunit Vps2 can functionally replace Vps24 in Saccharomyces cerevisiae. Engineering and genetic selections revealed the required features of both subunits. Our data allow us to propose three minimal features required for ESCRT-III function - spiral formation, lateral association of the spirals through heteropolymerization, and binding to the AAA + ATPase Vps4 for dynamic remodeling.
    Keywords:  ESCRT-III; S. cerevisiae; biochemistry; cell biology; chemical biology; multivesicular bodies; polymerization; protein trafficking
    DOI:  https://doi.org/10.7554/eLife.67709
  35. Biochem J. 2021 May 25. pii: BCJ20210015. [Epub ahead of print]
      Enzyme replacement therapy (ERT) is a scientifically rational and clinically proven treatment for lysosomal storage diseases. Most enzymes used for ERT are purified from the culture supernatant of mammalian cells. However, it is challenging to purify lysosomal enzymes with sufficient quality and quantity for clinical use due to their low secretion levels in mammalian cell systems. To improve the secretion efficiency of recombinant lysosomal enzymes, we evaluated the impact of artificial signal peptides on the production of recombinant lysosomal enzymes in Chinese Hamster Ovary (CHO) cell lines. We engineered two recombinant human lysosomal enzymes, N-acetyl-a-glucosaminidase (rhNAGLU) and glucosamine (N-acetyl)-6-sulfatase (rhGNS), by replacing their native signal peptides with 9 different signal peptides derived from highly secretory proteins and expressed them in CHO K1 cells. When comparing the native signal peptides, we found that rhGNS was secreted into media at higher levels than rhNAGLU. The secretion of rhNAGLU and rhGNS can, however, be carefully controlled by altering signal peptides. The secretion of rhNAGLU was relatively higher with murine Igk light chain and human chymotrypsinogen B1 signal peptides, whereas Igk light chain signal peptide 1 and human chymotrypsinogen B1 signal peptides were more effective for rhGNS secretion, suggesting that human chymotrypsinogen B1 signal peptide is the most appropriate for increasing lysosomal enzyme secretion.  Collectively, our results indicate that altering signal peptide can modulate the secretion of recombinant lysosome enzymes and will enable lysosomal enzyme production for clinical use.
    Keywords:  Mucopolysaccharidosis; N-acetylglucosamine-6-sulfatase (GNS); enzyme replacement therapy; signal peptide; -N-acetylglucosaminidase (NAGLU)
    DOI:  https://doi.org/10.1042/BCJ20210015