bims-lysosi Biomed News
on Lysosomes and signaling
Issue of 2021‒05‒16
thirty-four papers selected by
Stephanie Fernandes
Max Planck Institute for Biology of Ageing


  1. Mol Cell. 2021 Apr 30. pii: S1097-2765(21)00324-5. [Epub ahead of print]
      The TSC complex is a critical negative regulator of the small GTPase Rheb and mTORC1 in cellular stress signaling. The TSC2 subunit contains a catalytic GTPase activating protein domain and interacts with multiple regulators, while the precise function of TSC1 is unknown. Here we provide a structural characterization of TSC1 and define three domains: a C-terminal coiled-coil that interacts with TSC2, a central helical domain that mediates TSC1 oligomerization, and an N-terminal HEAT repeat domain that interacts with membrane phosphatidylinositol phosphates (PIPs). TSC1 architecture, oligomerization, and membrane binding are conserved in fungi and humans. We show that lysosomal recruitment of the TSC complex and subsequent inactivation of mTORC1 upon starvation depend on the marker lipid PI3,5P2, demonstrating a role for lysosomal PIPs in regulating TSC complex and mTORC1 activity via TSC1. Our study thus identifies a vital role of TSC1 in TSC complex function and mTORC1 signaling.
    Keywords:  TSC; X-ray crystallography; lysosomes; mTORC1; membrane binding; phosphatidylinositol phosphate
    DOI:  https://doi.org/10.1016/j.molcel.2021.04.019
  2. EMBO J. 2021 May 14. e106412
      The mammalian target of rapamycin complex 1 (mTORC1) integrates nutrients, growth factors, stress, and energy status to regulate cell growth and metabolism. Amino acids promote mTORC1 lysosomal localization and subsequent activation. However, the subcellular location or interacting proteins of mTORC1 under amino acid-deficient conditions is not completely understood. Here, we identify ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1) as a crucial regulator of mTORC1. ArfGAP1 interacts with mTORC1 in the absence of amino acids and inhibits mTORC1 lysosomal localization and activation. Mechanistically, the membrane curvature-sensing amphipathic lipid packing sensor (ALPS) motifs that bind to vesicle membranes are crucial for ArfGAP1 to interact with and regulate mTORC1 activity. Importantly, ArfGAP1 represses cell growth through mTORC1 and is an independent prognostic factor for the overall survival of pancreatic cancer patients. Our study identifies ArfGAP1 as a critical regulator of mTORC1 that functions by preventing the lysosomal transport and activation of mTORC1, with potential for cancer therapeutics.
    Keywords:  ArfGAP1; amino acids; lysosome; mTORC1; vesicle trafficking
    DOI:  https://doi.org/10.15252/embj.2020106412
  3. EMBO Rep. 2021 May 13. e52173
      Lysosomal positioning and mTOR (mammalian target of rapamycin) signaling coordinate cellular responses to nutrient levels. Inadequate nutrient sensing can result in growth delays, a hallmark of Lowe syndrome. OCRL mutations cause Lowe syndrome, but the role of OCRL in nutrient sensing is unknown. Here, we show that OCRL is localized to the centrosome by its ASH domain and that it recruits microtubule-anchoring factor SSX2IP to the centrosome, which is important in the formation of the microtubule-organizing center. Deficiency of OCRL in human and mouse cells results in loss of microtubule-organizing centers and impaired microtubule-based lysosome movement, which in turn leads to mTORC1 inactivation and abnormal nutrient sensing. Centrosome-targeted PACT-SSX2IP can restore microtubule anchoring and mTOR activity. Importantly, boosting the activity of mTORC1 restores the nutrient sensing ability of Lowe patients' cells. Our findings highlight mTORC1 as a novel therapeutic target for Lowe syndrome.
    Keywords:  OCRL; lowe syndrome; lysosome positioning; mTOR; microtubule nucleation
    DOI:  https://doi.org/10.15252/embr.202052173
  4. Autophagy. 2021 May 08. 1-17
      CREG1 is a small glycoprotein which has been proposed as a transcription repressor, a secretory ligand, a lysosomal, or a mitochondrial protein. This is largely because of lack of antibodies for immunolocalization validated through gain- and loss-of-function studies. In the present study, we demonstrate, using antibodies validated for immunofluorescence microscopy, that CREG1 is mainly localized to the endosomal-lysosomal compartment. Gain- and loss-of-function analyses reveal an important role for CREG1 in both macropinocytosis and clathrin-dependent endocytosis. CREG1 also promotes acidification of the endosomal-lysosomal compartment and increases lysosomal biogenesis. Functionally, overexpression of CREG1 enhances macroautophagy/autophagy and lysosome-mediated degradation, whereas knockdown or knockout of CREG1 has opposite effects. The function of CREG1 in lysosomal biogenesis is likely attributable to enhanced endocytic trafficking. Our results demonstrate that CREG1 is an endosomal-lysosomal protein implicated in endocytic trafficking and lysosomal biogenesis.Abbreviations: AIFM1/AIF: apoptosis inducing factor mitochondria associated 1; AO: acridine orange; ATP6V1H: ATPase H+ transporting V1 subunit H; CALR: calreticulin; CREG: cellular repressor of E1A stimulated genes; CTSC: cathepsin C; CTSD: cathepsin D; EBAG9/RCAS1: estrogen receptor binding site associated antigen 9; EIPA: 5-(N-ethyl-N-isopropyl)amiloride; ER: endoplasmic reticulum; GFP: green fluorescent protein; HEXA: hexosaminidase subunit alpha; IGF2R: insulin like growth factor 2 receptor; LAMP1: lysosomal associated membrane protein 1; M6PR: mannose-6-phosphate receptor, cation dependent; MAPK1/ERK2: mitogen-activated protein kinase 1; MTORC1: mechanistic target of rapamycin kinase complex 1; PDIA2: protein disulfide isomerase family A member 2; SQSTM1/p62: sequestosome 1; TF: transferrin; TFEB: transcription factor EB.
    Keywords:  Autophagy; endocytosis; gene targeting; hepatocytes; immunofluorescence
    DOI:  https://doi.org/10.1080/15548627.2021.1909997
  5. Front Cell Dev Biol. 2021 ;9 667311
      Folliculin (FLCN) is a tumor suppressor gene responsible for the inherited Birt-Hogg-Dubé (BHD) syndrome, which affects kidneys, skin and lungs. FLCN is a highly conserved protein that forms a complex with folliculin interacting proteins 1 and 2 (FNIP1/2). Although its sequence does not show homology to known functional domains, structural studies have determined a role of FLCN as a GTPase activating protein (GAP) for small GTPases such as Rag GTPases. FLCN GAP activity on the Rags is required for the recruitment of mTORC1 and the transcriptional factors TFEB and TFE3 on the lysosome, where mTORC1 phosphorylates and inactivates these factors. TFEB/TFE3 are master regulators of lysosomal biogenesis and function, and autophagy. By this mechanism, FLCN/FNIP complex participates in the control of metabolic processes. AMPK, a key regulator of catabolism, interacts with FLCN/FNIP complex. FLCN loss results in constitutive activation of AMPK, which suggests an additional mechanism by which FLCN/FNIP may control metabolism. AMPK regulates the expression and activity of the transcriptional cofactors PGC1α/β, implicated in the control of mitochondrial biogenesis and oxidative metabolism. In this review, we summarize our current knowledge of the interplay between mTORC1, FLCN/FNIP, and AMPK and their implications in the control of cellular homeostasis through the transcriptional activity of TFEB/TFE3 and PGC1α/β. Other pathways and cellular processes regulated by FLCN will be briefly discussed.
    Keywords:  AMPK; PGC1α; TFE3; TFEB; folliculin; mTORC1; metabolism; transcriptional regulation
    DOI:  https://doi.org/10.3389/fcell.2021.667311
  6. J Biol Chem. 2021 May 07. pii: S0021-9258(21)00562-7. [Epub ahead of print] 100769
      Acid alpha-glucosidase (GAA) is a lysosomal glycogen-catabolizing enzyme, the deficiency of which leads to Pompe disease. Pompe disease can be treated with systemic recombinant human GAA (rhGAA) enzyme replacement therapy (ERT), but the current standard of care exhibits poor uptake in skeletal muscles, limiting its clinical efficacy. Further, it is unclear how the specific cellular processing steps of GAA post-delivery to lysosomes impact its efficacy. GAA undergoes both proteolytic cleavage and glycan trimming within the endolysosomal pathway, yielding an enzyme that is more efficient in hydrolyzing its natural substrate, glycogen. Here, we developed a tool kit of modified rhGAAs that allowed us to dissect the individual contributions of glycan trimming and proteolysis on maturation-associated increases in glycogen hydrolysis using in vitro and in cellulo enzyme processing, glycopeptide analysis by mass spectrometry, and high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) for enzyme kinetics. Chemical modifications of terminal sialic acids on N-glycans blocked sialidase activity in vitro and in cellulo, thereby preventing downstream glycan trimming without affecting proteolysis. This sialidase-resistant rhGAA displayed only partial activation following endolysosomal processing, as evidenced by reduced catalytic efficiency. We also generated enzymatically deglycosylated rhGAA that was shown to be partially activated despite not undergoing proteolytic processing. Taken together, these data suggest that an optimal rhGAA ERT would require both N-glycan and proteolytic processing to attain the most efficient enzyme for glycogen hydrolysis and treatment of Pompe disease. Future studies should examine the amenability of next-generation ERTs to both types of cellular processing.
    Keywords:  enzyme processing; glycogen storage disease; lysosomal glycoprotein; lysosomal storage disease; lysosome; mannose-6-phosphate
    DOI:  https://doi.org/10.1016/j.jbc.2021.100769
  7. J Hematol Oncol. 2021 May 14. 14(1): 79
      Long known as digestive organelles, lysosomes have now emerged as multifaceted centers responsible for degradation, nutrient sensing, and immunity. Growing evidence also implicates role of lysosome-related mechanisms in pathologic process. In this review, we discuss physiological function of lysosomes and, more importantly, how the homeostasis of lysosomes is disrupted in several diseases, including atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, lysosomal storage disorders, and malignant tumors. In atherosclerosis and Gaucher disease, dysfunction of lysosomes changes cytokine secretion from macrophages, partially through inflammasome activation. In neurodegenerative diseases, defect autophagy facilitates accumulation of toxic protein and dysfunctional organelles leading to neuron death. Lysosomal dysfunction has been demonstrated in pathology of pancreatitis. Abnormal autophagy activation or inhibition has been revealed in autoimmune disorders. In tumor microenvironment, malignant phenotypes, including tumorigenesis, growth regulation, invasion, drug resistance, and radiotherapy resistance, of tumor cells and behaviors of tumor-associated macrophages, fibroblasts, dendritic cells, and T cells are also mediated by lysosomes. Based on these findings, a series of therapeutic methods targeting lysosomal proteins and processes have been developed from bench to bedside. In a word, present researches corroborate lysosomes to be pivotal organelles for understanding pathology of atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, and lysosomal storage disorders, and malignant tumors and developing novel therapeutic strategies.
    Keywords:  Atherosclerosis; Autoimmune disorder; Lysosomal storage disorder; Lysosome; Neurodegenerative disease; Pancreatitis; Tumor microenvironment; Tumor-associated macrophage
    DOI:  https://doi.org/10.1186/s13045-021-01087-1
  8. Autophagy. 2021 May 12. 1-11
      Glioblastoma (GBM), a very aggressive and incurable tumor, often results from constitutive activation of EGFR (epidermal growth factor receptor) and of phosphoinositide 3-kinase (PI3K). To understand the role of autophagy in the pathogenesis of glial tumors in vivo, we used an established Drosophila melanogaster model of glioma based on overexpression in larval glial cells of an active human EGFR and of the PI3K homolog Pi3K92E/Dp110. Interestingly, the resulting hyperplastic glia express high levels of key components of the lysosomal-autophagic compartment, including vacuolar-type H+-ATPase (V-ATPase) subunits and ref(2)P (refractory to Sigma P), the Drosophila homolog of SQSTM1/p62. However, cellular clearance of autophagic cargoes appears inhibited upstream of autophagosome formation. Remarkably, downregulation of subunits of V-ATPase, of Pdk1, or of the Tor (Target of rapamycin) complex 1 (TORC1) component raptor prevents overgrowth and normalize ref(2)P levels. In addition, downregulation of the V-ATPase subunit VhaPPA1-1 reduces Akt and Tor-dependent signaling and restores clearance. Consistent with evidence in flies, neurospheres from patients with high V-ATPase subunit expression show inhibition of autophagy. Altogether, our data suggest that autophagy is repressed during glial tumorigenesis and that V-ATPase and MTORC1 components acting at lysosomes could represent therapeutic targets against GBM.
    Keywords:  Autophagy; V-ATPase; cancer model; fruit fly; glioblastoma; lysosomes; neurospheres; ref(2)P
    DOI:  https://doi.org/10.1080/15548627.2021.1918915
  9. Nat Commun. 2021 May 11. 12(1): 2695
      mTOR signaling, involving mTORC1 and mTORC2 complexes, critically regulates neural development and is implicated in various brain disorders. However, we do not fully understand all of the upstream signaling components that can regulate mTOR signaling, especially in neurons. Here, we show a direct, regulated inhibition of mTOR by Tanc2, an adaptor/scaffolding protein with strong neurodevelopmental and psychiatric implications. While Tanc2-null mice show embryonic lethality, Tanc2-haploinsufficient mice survive but display mTORC1/2 hyperactivity accompanying synaptic and behavioral deficits reversed by mTOR-inhibiting rapamycin. Tanc2 interacts with and inhibits mTOR, which is suppressed by mTOR-activating serum or ketamine, a fast-acting antidepressant. Tanc2 and Deptor, also known to inhibit mTORC1/2 minimally affecting neurodevelopment, distinctly inhibit mTOR in early- and late-stage neurons. Lastly, Tanc2 inhibits mTORC1/2 in human neural progenitor cells and neurons. In summary, our findings show that Tanc2 is a mTORC1/2 inhibitor affecting neurodevelopment.
    DOI:  https://doi.org/10.1038/s41467-021-22908-4
  10. Autophagy. 2021 May 14. 1-2
      Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer. The elevated macroautophagy/autophagy in these tumors supports growth, promotes immune evasion, and increases therapeutic resistance. Therefore, targeting autophagy is a therapeutic strategy that is being pursued to treat PDAC patients. Whereas autophagy inhibition impairs mitochondrial metabolism in PDAC, the specific metabolite(s) that becomes limiting when autophagy is inhibited has not been identified. We report that loss of autophagy specifically results in intracellular cysteine depletion under nutrient-replete conditions. Mechanistically, we show that PDAC cells utilize the autophagy machinery to regulate the activity and localization of the cystine transporter SLC7A11 at the plasma membrane. Upon inhibition of autophagy, SLC7A11 is localized to lysosomes in an MTORC2-dependent manner. Our findings reveal a novel connection between autophagy and cysteine metabolism in pancreatic cancer.
    Keywords:  Autophagy; SLC7A11; cysteine; lysosome; metabolism; pancreatic ductal adenocarcinoma
    DOI:  https://doi.org/10.1080/15548627.2021.1922984
  11. JBMR Plus. 2021 May;5(5): e10486
      The mammalian target of rapamycin complex 1 (mTORC1) complex is the major nutrient sensor in mammalian cells that responds to amino acids, energy levels, growth factors, and hormones, such as insulin, to control anabolic and catabolic processes. We have recently shown that suppression of the mTORC1 complex in bone-forming osteoblasts (OBs) improved glucose handling in male mice fed a normal or obesogenic diet. Mechanistically, this occurs, at least in part, by increasing OB insulin sensitivity leading to upregulation of glucose uptake and glycolysis. Given previously reported sex-dependent differences observed upon antagonism of mTORC1 signaling, we investigated the metabolic and skeletal effects of genetic inactivation of preosteoblastic-mTORC1 in female mice. Eight-week-old control diet (CD)-fed Rptor ob -/- mice had a low bone mass with a significant reduction in trabecular bone volume and trabecular number, reduced cortical bone thickness, and increased marrow adiposity. Despite no changes in body composition, CD-fed Rptor ob -/- mice exhibited significant lower fasting insulin and glucose levels and increased insulin sensitivity. Upon high-fat diet (HFD) feeding, Rptor ob -/- mice were resistant to a diet-induced increase in whole-body and total fat mass and protected from the development of diet-induced insulin resistance. Notably, although 12 weeks of HFD increased marrow adiposity, with minimal changes in both trabecular and cortical bone in the female control mice, marrow adiposity was significantly reduced in HFD-fed Rptor ob -/- compared to both HFD-fed control and CD-fed Rptor ob -/- mice. Collectively, our results demonstrate that mTORC1 function in preosteoblasts is crucial for skeletal development and skeletal regulation of glucose homeostasis in both male and female mice. Importantly, loss of mTORC1 function in OBs results in metabolic and physiological adaptations that mirror a caloric restriction phenotype (under CD) and protects against HFD-induced obesity, associated insulin resistance, and marrow adiposity expansion. These results highlight the critical contribution of the skeleton in the regulation of whole-body energy homeostasis. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
    Keywords:  BONE MARROW ADIPOSE TISSUE; DIET‐INDUCED INSULIN RESISTANCE; DIET‐INDUCED OBESITY; PREOSTEOBLAST; mTORC1
    DOI:  https://doi.org/10.1002/jbm4.10486
  12. JIMD Rep. 2021 May;59(1): 81-89
      Pompe disease, an autosomal recessive lysosomal storage disorder, is caused by deficiency of lysosomal acid alpha-glucosidase (GAA). On cellular level, there is lysosomal-bound and free accumulation of glycogen and subsequent damage of organelles and organs. The most severe affected tissues are skeletal muscles and heart. The only available treatment to date is an enzyme replacement therapy (ERT) with alglucosidase alfa, a recombinant human GAA (rhGAA) modified with mannose-6-phosphate (M6P), which is internalized via M6P-mediated endocytosis. There is an unmet need to improve this type of therapy, especially in regard to skeletal muscle. Using different tissue culture models, we recently provided evidence that a moss-derived nonphosphorylated rhGAA (moss-GAA), carrying a glycosylation with terminal N-acetylglucosamine residues (GnGn), might have the potential to improve targeting of skeletal muscle. Now, we present a pilot treatment of Gaa -/- mice with moss-GAA. We investigated general effects as well as the uptake into different organs following short-term treatment. Our results do confirm that moss-GAA reaches the target disease organs and thus might have the potential to be an alternative or complementary ERT to the existing one.
    Keywords:  Pompe disease; enzyme replacement therapy; glycogen storage disease type II; moss‐GAA
    DOI:  https://doi.org/10.1002/jmd2.12203
  13. Trends Mol Med. 2021 May 08. pii: S1471-4914(21)00099-X. [Epub ahead of print]
      Nephropathic cystinosis is a severe, monogenic systemic disorder that presents early in life and leads to progressive organ damage, particularly affecting the kidneys. It is caused by mutations in the CTNS gene, which encodes the lysosomal transporter cystinosin, resulting in intralysosomal accumulation of cystine. Recent studies demonstrated that the loss of cystinosin is associated with disrupted autophagy dynamics, accumulation of distorted mitochondria, and increased oxidative stress, leading to abnormal proliferation and dysfunction of kidney cells. We discuss these molecular mechanisms driving nephropathic cystinosis. Further, we consider how unravelling molecular mechanisms supports the identification and development of new strategies for cystinosis by the use of small molecules, biologicals, and genetic rescue of the disease in vitro and in vivo.
    Keywords:  CTNS gene; cystinosis; lysosomal storage disorder; renal Fanconi syndrome; therapeutic strategies
    DOI:  https://doi.org/10.1016/j.molmed.2021.04.004
  14. Elife. 2021 May 14. pii: e62233. [Epub ahead of print]10
      Age-related changes to histone levels are seen in many species. However, it is unclear whether changes to histone expression could be exploited to ameliorate the effects of ageing in multicellular organisms. Here we show that inhibition of mTORC1 by the lifespan-extending drug rapamycin increases expression of histones H3 and H4 post-transcriptionally, through eIF3-mediated translation. Elevated expression of H3/H4 in intestinal enterocytes in Drosophila alters chromatin organization, induces intestinal autophagy through transcriptional regulation, prevents age-related decline in the intestine. Importantly, it also mediates rapamycin-induced longevity and intestinal health. Histones H3/H4 regulate expression of an autophagy cargo adaptor Bchs (WDFY3 in mammals), increased expression of which in enterocytes mediates increased H3/H4-dependent healthy longevity. In mice, rapamycin treatment increases expression of histone proteins and Wdfy3 transcription, and alters chromatin organisation in the small intestine, suggesting the mTORC1-histone axis is at least partially conserved in mammals and may offer new targets for anti-ageing interventions.
    Keywords:  D. melanogaster; cell biology; chromosomes; gene expression; mouse
    DOI:  https://doi.org/10.7554/eLife.62233
  15. Adv Exp Med Biol. 2021 May 13.
      Lysosomal storage disorders (LSDs) are rare inborn errors of metabolism caused by defects in lysosomal function. These diseases are characterized by accumulation of completely or partially degraded substrates in the lysosomes leading to cellular dysfunction of the affected cells. Currently, enzyme replacement therapies (ERTs), treatments directed at substrate reduction (SRT), and hematopoietic stem cell (HSC) transplantation are the only treatment options for LSDs, and the effects of these treatments depend strongly on the type of LSD and the time of initiation of treatment. However, some of the LSDs still lack a durable and curative treatment. Therefore, a variety of novel treatments for LSD patients has been developed in the past few years. However, despite significant progress, the efficacy of some of these treatments remains limited because these therapies are often initiated after irreversible organ damage has occurred.Here, we provide an overview of the known effects of LSDs on stem cell function, as well as a synopsis of available stem cell-based cell and gene therapies that have been/are being developed for the treatment of LSDs. We discuss the advantages and disadvantages of use of hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and induced pluripotent stem cell (iPSC)-related (gene) therapies. An overview of current research data indicates that when stem cell and/or gene therapy applications are used in combination with existing therapies such as ERT, SRT, and chaperone therapies, promising results can be achieved, showing that these treatments may result in alleviation of existing symptoms and/or prevention of progression of the disease. All together, these studies offer some insight in LSD stem cell biology and provide a hopeful perspective for the use of stem cells. Further development and improvement of these stem cell (gene) combination therapies may greatly improve the current treatment options and outcomes of patients with a LSD.
    Keywords:  Gene therapy; Hematopoietic stem cell; Induced pluripotent stem cell; Lysosomal storage disease; Lysosomal storage disorder; Mesenchymal stem cell; Neural stem cell; Stem cell
    DOI:  https://doi.org/10.1007/5584_2021_639
  16. Stem Cell Reports. 2021 May 04. pii: S2213-6711(21)00206-X. [Epub ahead of print]
      Globoid cell leukodystrophy (GLD) is a rare neurodegenerative lysosomal storage disease caused by an inherited deficiency of β-galactocerebrosidase (GALC). GLD pathogenesis and therapeutic correction have been poorly studied in patient neural cells. Here, we investigated the impact of GALC deficiency and lentiviral vector-mediated GALC rescue/overexpression in induced pluripotent stem cell (iPSC)-derived neural progenitors and neuronal/glial progeny obtained from two GLD patients. GLD neural progeny displayed progressive psychosine storage, oligodendroglial and neuronal defects, unbalanced lipid composition, and early activation of cellular senescence, depending on the disease-causing mutation. The partial rescue of the neural differentiation program upon GALC reconstitution and psychosine clearance suggests multiple mechanisms contributing to neural pathology in GLD. Also, the pathological phenotype associated to supraphysiological GALC levels highlights the need of regulated GALC expression for proper human neural commitment/differentiation. These data have important implications for establishing safe therapeutic strategies to enhance disease correction of GLD.
    Keywords:  Krabbe disease; Pluripotent stem cells; gene therapy; leukodystrophy; neural progenitors; neurons; oligodendrocytes; senescence
    DOI:  https://doi.org/10.1016/j.stemcr.2021.04.011
  17. Front Cell Neurosci. 2021 ;15 647860
      Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disease that is caused by a mutation of the NPC1 or NPC2 gene, in which un-esterified cholesterol and sphingolipids accumulate mainly in the liver, spleen, and brain. Abnormal lysosomal storage leads to cell damage, neurological problems, and premature death. The time of onset and severity of symptoms of NPC disease are highly variable. The molecular mechanisms that are responsible for NPC disease pathology are far from being understood. The present study generated and characterized a zebrafish mutant that lacks Npc2 protein that may be useful for studies at the organismal, cellular, and molecular levels and both small-scale and high-throughput screens. Using CRISPR/Cas9 technology, we knocked out the zebrafish homolog of NPC2. Five-day-old npc2 mutants were morphologically indistinguishable from wildtype larvae. We found that live npc2-/- larvae exhibited stronger Nile blue staining. The npc2-/- larvae exhibited low mobility and a high anxiety-related response. These behavioral changes correlated with downregulation of the mcu (mitochondrial calcium uniporter) gene, ppp3ca (calcineurin) gene, and genes that are involved in myelination (mbp and mpz). Histological analysis of adult npc2-/- zebrafish revealed that pathological changes in the nervous system, kidney, liver, and pancreas correlated with inflammatory responses (i.e., the upregulation of il1, nfκβ, and mpeg; i.e., hallmarks of NPC disease). These findings suggest that the npc2 mutant zebrafish may be a model of NPC disease.
    Keywords:  Niemann-Pick type C; Nile blue; inflammation; lysosomal storage disease; myelin; neurodegeneration; npc2; zebrafish model
    DOI:  https://doi.org/10.3389/fncel.2021.647860
  18. Trends Cell Biol. 2021 May 10. pii: S0962-8924(21)00088-X. [Epub ahead of print]
      Endosomal protein complex required for transport-III (ESCRT-III) polymers are involved in many crucial cellular functions, from cell division to endosome-lysosome dynamics. As a eukaryotic membrane remodeling machinery, ESCRT-III is unique in its ability to catalyze fission of membrane necks from their luminal side and to participate in membrane remodeling processes of essentially all cellular organelles. Found in Archaea, it is also the most evolutionary ancient membrane remodeling machinery. The simple protein structure shared by all of its subunits assembles into a large variety of filament shapes, limiting our understanding of how these filaments achieve membrane remodeling. Here, we review recent findings that discovered unpredicted properties of ESCRT-III polymers, which enable us to define general principles of the mechanism by which ESCRT-III filaments remodel membranes.
    Keywords:  ESCRT-III; membrane fission; membrane remodeling; molecular mechanism
    DOI:  https://doi.org/10.1016/j.tcb.2021.04.005
  19. Cell Death Dis. 2021 May 13. 12(5): 481
      The cyclin-dependent kinase inhibitor p27Kip1 (p27) has been involved in promoting autophagy and survival in conditions of metabolic stress. While the signaling cascade upstream of p27 leading to its cytoplasmic localization and autophagy induction has been extensively studied, how p27 stimulates the autophagic process remains unclear. Here, we investigated the mechanism by which p27 promotes autophagy upon glucose deprivation. Mouse embryo fibroblasts (MEFs) lacking p27 exhibit a decreased autophagy flux compared to wild-type cells and this is correlated with an abnormal distribution of autophagosomes. Indeed, while autophagosomes are mainly located in the perinuclear area in wild-type cells, they are distributed throughout the cytoplasm in p27-null MEFs. Autophagosome trafficking towards the perinuclear area, where most lysosomes reside, is critical for autophagosome-lysosome fusion and cargo degradation. Vesicle trafficking is mediated by motor proteins, themselves recruited preferentially to acetylated microtubules, and autophagy flux is directly correlated to microtubule acetylation levels. p27-/- MEFs exhibit a marked reduction in microtubule acetylation levels and restoring microtubule acetylation in these cells, either by re-expressing p27 or with deacetylase inhibitors, restores perinuclear positioning of autophagosomes and autophagy flux. Finally, we find that p27 promotes microtubule acetylation by binding to and stabilizing α-tubulin acetyltransferase (ATAT1) in glucose-deprived cells. ATAT1 knockdown results in random distribution of autophagosomes in p27+/+ MEFs and impaired autophagy flux, similar to that observed in p27-/- cells. Overall, in response to glucose starvation, p27 promotes autophagy by facilitating autophagosome trafficking along microtubule tracks by maintaining elevated microtubule acetylation via an ATAT1-dependent mechanism.
    DOI:  https://doi.org/10.1038/s41419-021-03759-9
  20. Immunol Cell Biol. 2021 May 14.
      The mechanistic/mammalian target of rapamycin (mTOR) is considered to be an atypical protein kinase that plays a critical role in integrating different cellular and environmental inputs in the form of growth factors, nutrients, and energy and, subsequently, in regulating different cellular events, including cell metabolism, survival, homeostasis, growth, and cellular differentiation. Immunologically, mTOR is a critical regulator of immune function through integrating numerous signals from the immune microenvironment, which coordinates the functions of immune cells and T cell fate decisions. The crucial role of mTOR in immune responses has been lately even more appreciated. MicroRNAs (miRNAs) are endogenous, small, non-coding single-stranded RNAs that act as molecular regulators involved in multiple processes during immune cells development, homeostasis, activation, and effector polarization. Several studies have recently indicated that a range of miRNAs is involved in regulating the PI3K/AKT/mTOR signaling pathway by targeting multiple components of this signaling pathway and modulating the expression and function of these targets. Current evidence has revealed the interplay between miRNAs and the mTOR pathway circuits in various immune cell-types. The expression of individual miRNA can affect the function of mTOR signaling to determine the cell fate decisions in immune responses through coordinating immune signaling and cell metabolism. Dysregulation of the mTOR pathway/miRNAs crosstalk has been reported in cancers and various immune-related diseases. Thus, dysregulated miRNAs expression profiles could influence the mTOR pathway, resulting in the promotion of aberrant immunity. This review summarizes the latest information regarding the reciprocal role of the mTOR signaling pathway and miRNAs in orchestrating immune responses.
    Keywords:  AKT; Immune response; PTEN; mTOR signaling; miRNAs
    DOI:  https://doi.org/10.1111/imcb.12477
  21. Sci Adv. 2021 May;pii: eabf4155. [Epub ahead of print]7(20):
      The enzymes β-galactosidase (GLB1) and neuraminidase 1 (NEU1; sialidase 1) participate in the degradation of glycoproteins and glycolipids in the lysosome. To remain active and stable, they associate with PPCA [protective protein cathepsin A (CTSA)] into a high-molecular weight lysosomal multienzyme complex (LMC), of which several forms exist. Genetic defects in these three proteins cause the lysosomal storage diseases GM1-gangliosidosis/mucopolysaccharidosis IV type B, sialidosis, and galactosialidosis, respectively. To better understand the interactions between these enzymes, we determined the three-dimensional structure of the murine LMC core. This 0.8-MDa complex is composed of three GLB1 dimers and three CTSA dimers, adopting a triangular architecture maintained through six copies of a unique GLB1-CTSA polar interface. Mutations in this contact surface that occur in GM1-gangliosidosis prevent formation of the LMC in vitro. These findings may facilitate development of therapies for lysosomal storage disorders.
    DOI:  https://doi.org/10.1126/sciadv.abf4155
  22. Nat Commun. 2021 May 10. 12(1): 2589
      Patients with Tuberous Sclerosis Complex (TSC) show aberrant wiring of neuronal connections formed during development which may contribute to symptoms of TSC, such as intellectual disabilities, autism, and epilepsy. Yet models examining the molecular basis for axonal guidance defects in developing human neurons have not been developed. Here, we generate human induced pluripotent stem cell (hiPSC) lines from a patient with TSC and genetically engineer counterparts and isogenic controls. By differentiating hiPSCs, we show that control neurons respond to canonical guidance cues as predicted. Conversely, neurons with heterozygous loss of TSC2 exhibit reduced responses to several repulsive cues and defective axon guidance. While TSC2 is a known key negative regulator of MTOR-dependent protein synthesis, we find that TSC2 signaled through MTOR-independent RHOA in growth cones. Our results suggest that neural network connectivity defects in patients with TSC may result from defects in RHOA-mediated regulation of cytoskeletal dynamics during neuronal development.
    DOI:  https://doi.org/10.1038/s41467-021-22770-4
  23. JIMD Rep. 2021 May;59(1): 90-103
      Monosialotetrahexosylganglioside (GMI) gangliosidosis and Morquio type B (MorB) are two lysosomal storage disorders (LSDs) caused by the same enzyme deficiency, β-galactosidase (βgal). GMI gangliosidosis, associated with GMI ganglioside accumulation, is a neurodegenerative condition characterized by psychomotor regression, visceromegaly, cherry red spot, and facial and skeletal abnormalities. MorB is characterized by prominent and severe skeletal deformities due to keratan sulfate (KS) accumulation. There are only a few reports on intermediate phenotypes between GMI gangliosidosis and MorB. The presentation of two new patients with this rare intermediate phenotype motivated us to review the literature, to study differences and similarities between GMI gangliosidosis and MorB, and to speculate about the possible mechanisms that may contribute to the differences in clinical presentation. In conclusion, we hypothesize that GMI gangliosidosis and MorB are part of one phenotypic spectrum of the same disease and that the classification of LSDs might need to be revised.
    Keywords:  GMI gangliosidosis; Morquio type B; genotype‐phenotype; intermediate phenotype; lysosomal storage disorder; pathophysiology
    DOI:  https://doi.org/10.1002/jmd2.12204
  24. Autophagy. 2020 Dec 01. 1-16
      As a highly dynamic organelle, mitochondria undergo constant fission and fusion to change their morphology and function, coping with various stress conditions. Loss of the balance between fission and fusion leads to impaired mitochondria function, which plays a critical role in the pathogenesis of Parkinson disease (PD). Yet the mechanisms behind mitochondria dynamics regulation remain to be fully illustrated. Chaperone-mediated autophagy (CMA) is a lysosome-dependent process that selectively degrades proteins to maintain cellular proteostasis. In this study, we demonstrated that MARCHF5, an E3 ubiquitin ligase required for mitochondria fission, is a CMA substrate. MARCHF5 interacted with key CMA regulators and was degraded by lysosomes. Severe oxidative stress compromised CMA activity and stabilized MARCHF5, which facilitated DNM1L translocation and led to excessive fission. Increase of CMA activity promoted MARCHF5 turnover, attenuated DNM1L translocation, and reduced mitochondria fragmentation, which alleviated mitochondrial dysfunction under oxidative stress. Furthermore, we showed that conditional expression of LAMP2A, the key CMA regulator, in dopaminergic (DA) neurons helped maintain mitochondria morphology and protected DA neuronal viability in a rodent PD model. Our work uncovers a critical role of CMA in maintaining proper mitochondria dynamics, and loss of this regulatory control may occur in PD and underlie its pathogenic process.Abbreviations: CMA: chaperone-mediated autophagy; DA: dopaminergic; DNM1L: dynamin 1 like; FCCP: carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; HSPA8: heat shock protein family A (Hsp70) member 8; LAMP2A: lysosomal associated membrane protein 2A; MARCHF5: membrane-associated ring-CH-type finger 5; MMP: mitochondria membrane potential; OCR: oxygen consumption rate; 6-OHDA: 6-hydroxydopamine; PD: Parkinson disease; SNc: substantia nigra pars compacta; TEM: transmission electron microscopy; TH: tyrosine hydroxylase; TMRE: tetramethylrhodamine ethyl ester perchlorate; WT: wild type.
    Keywords:  Autophagy/mitochondria/oxidative stress/Parkinson disease/proteostasis
    DOI:  https://doi.org/10.1080/15548627.2020.1848128
  25. Cell Mol Life Sci. 2021 May 11.
      Despite new advances on the functions of ER chaperones at the cell surface, the translocation mechanisms whereby these chaperones can escape from the ER to the cell surface are just emerging. Previously we reported that in many cancer types, upon ER stress, IRE1α binds to and triggers SRC activation resulting in KDEL receptor dispersion from the Golgi and suppression of retrograde transport. In this study, using a combination of molecular, biochemical, and imaging approaches, we discovered that in colon and lung cancer, upon ER stress, ER chaperones, such as GRP78 bypass the Golgi and unconventionally traffic to the cell surface via endosomal transport mediated by Rab GTPases (Rab4, 11 and 15). Such unconventional transport is driven by membrane fusion between ER-derived vesicles and endosomes requiring the v-SNARE BET1 and t-SNARE Syntaxin 13. Furthermore, GRP78 loading into ER-derived vesicles requires the co-chaperone DNAJC3 that is regulated by ER-stress induced PERK-AKT-mTOR signaling.
    Keywords:  Endoplasmic reticulum stress; Endosome; GRP78; Unconventional trafficking
    DOI:  https://doi.org/10.1007/s00018-021-03849-z
  26. Mol Psychiatry. 2021 May 14.
      The AKT-mTOR signaling transduction pathway plays an important role in neurodevelopment and synaptic plasticity. mTOR is a serine/threonine kinase that modulates signals from multiple neurotransmitters and phosphorylates specific proteins to regulate protein synthesis and cytoskeletal organization. There is substantial evidence demonstrating abnormalities in AKT expression and activity in different schizophrenia (SZ) models. However, direct evidence for dysregulated mTOR kinase activity and its consequences on downstream effector proteins in SZ pathophysiology is lacking. Recently, we reported reduced phosphorylation of mTOR at an activating site and abnormal mTOR complex formation in the SZ dorsolateral prefrontal cortex (DLPFC). Here, we expand on our hypothesis of disrupted mTOR signaling in the SZ brain and studied the expression and activity of downstream effector proteins of mTOR complexes and the kinase activity profiles of SZ subjects. We found that S6RP phosphorylation, downstream of mTOR complex I, is reduced, whereas PKCα phosphorylation, downstream of mTOR complex II, is increased in SZ DLPFC. In rats chronically treated with haloperidol, we showed that S6RP phosphorylation is increased in the rat frontal cortex, suggesting a potential novel mechanism of action for antipsychotics. We also demonstrated key differences in kinase signaling networks between SZ and comparison subjects for both males and females using kinome peptide arrays. We further investigated the role of mTOR kinase activity by inhibiting it with rapamycin in postmortem tissue and compared the impact of mTOR inhibition in SZ and comparison subjects using kinome arrays. We found that SZ subjects are globally more sensitive to rapamycin treatment and AMP-activated protein kinase (AMPK) contributes to this differential kinase activity. Together, our findings provide new insights into the role of mTOR as a master regulator of kinase activity in SZ and suggest potential targets for therapeutic intervention.
    DOI:  https://doi.org/10.1038/s41380-021-01135-9
  27. Neurosci Lett. 2021 May 06. pii: S0304-3940(21)00322-0. [Epub ahead of print] 135944
      Mucolipidosis IV (MLIV) is an autosomal-recessive disease caused by loss-of-function mutations in the MCOLN1 gene encoding the non-selective cationic lysosomal channel transient receptor potential mucolipin-1 (TRPML1). Patients with MLIV suffer from severe motor and cognitive deficits that manifest in early infancy and progressive loss of vision leading to blindness in the second decade of life. There are no therapies available for MLIV and the unmet medical need is extremely high. Here we review the spectrum of clinical presentations and the latest research in the MLIV pre-clinical model, with the aim of highlighting the progress in understanding the pathophysiology of the disease. These highlights include elucidation of the neurodevelopmental versus neurodegenerative features over the course of disease, hypomyelination as one of the major brain pathological disease hallmarks, and dysregulation of cytokines, with emerging evidence of IFN-gamma pathway upregulation in response to TRPML1 loss and pro-inflammatory activation of astrocytes and microglia. These scientific advances in the MLIV field provide a basis for future translational research, including biomarker and therapy development, that are desperately needed for this patient population.
    Keywords:  Lysosomal disease; TRPML1; hypomyelinating leukodystrophy; lysosome; mucolipin-1
    DOI:  https://doi.org/10.1016/j.neulet.2021.135944
  28. Mol Cells. 2021 May 11.
      The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.
    Keywords:  MiT family transcription factors; autophagy; immune cells; lysosome; metabolism; microphthalmia-associated transcription factor (MITF); mitochondria; stress response; transcription factor E3 (TFE3); transcription factor EB (TFEB); transcription factor EC
    DOI:  https://doi.org/10.14348/molcells.2021.0067
  29. Autophagy. 2021 May 10. 1-20
      Eukaryotic cells use post-translational modifications to diversify and dynamically coordinate the function and properties of protein networks within various cellular processes. For example, the process of autophagy strongly depends on the balanced action of kinases and phosphatases. Highly conserved from the budding yeast Saccharomyces cerevisiae to humans, autophagy is a tightly regulated self-degradation process that is crucial for survival, stress adaptation, maintenance of cellular and organismal homeostasis, and cell differentiation and development. Many studies have emphasized the importance of kinases and phosphatases in the regulation of autophagy and identified many of the core autophagy proteins as their direct targets. In this review, we summarize the current knowledge on kinases and phosphatases acting on the core autophagy machinery and discuss the relevance of phosphoregulation for the overall process of autophagy.
    Keywords:  Autophagosome; PAS; macroautophagy; phagophore; posttranslational modification
    DOI:  https://doi.org/10.1080/15548627.2021.1909407
  30. Microb Cell. 2021 Apr 13. 8(5): 87-90
      Eukaryotic cells are complicated factories that need ensure productivity and functionality on the cellular level as well as being able to communicate with their environment. In order to do so cells developed intracellular communication systems. For a long time, research focused mainly on the secretory/biosynthetic and endocytic routes for communication, leaving the communication with other organelles apart. In the last decade, this view has changed dramatically and a more holistic view of intracellular communication is emerging. We are still at the tip of the iceberg, but a common theme of touching, kissing, fusing is emerging as general principles of communication.
    Keywords:  intracellular traffic; kiss-and-run; membrane contact sites; membrane fusion; signalling
    DOI:  https://doi.org/10.15698/mic2021.05.747
  31. Nat Commun. 2021 May 11. 12(1): 2673
      Vesicular traffic and membrane contact sites between organelles enable the exchange of proteins, lipids, and metabolites. Recruitment of tethers to contact sites between the endoplasmic reticulum (ER) and the plasma membrane is often triggered by calcium. Here we reveal a function for calcium in the repression of cholesterol export at membrane contact sites between the ER and the Golgi complex. We show that calcium efflux from ER stores induced by inositol-triphosphate [IP3] accumulation upon loss of the inositol 5-phosphatase INPP5A or receptor signaling triggers depletion of cholesterol and associated Gb3 from the cell surface, resulting in a blockade of clathrin-independent endocytosis (CIE) of Shiga toxin. This phenotype is caused by the calcium-induced dissociation of oxysterol binding protein (OSBP) from the Golgi complex and from VAP-containing membrane contact sites. Our findings reveal a crucial function for INPP5A-mediated IP3 hydrolysis in the control of lipid exchange at membrane contact sites.
    DOI:  https://doi.org/10.1038/s41467-021-22882-x
  32. Front Cell Dev Biol. 2021 ;9 684049
      
    Keywords:  autophagy; cancer; cell metabolism; inflammation; nutrients and energy
    DOI:  https://doi.org/10.3389/fcell.2021.684049
  33. Sci Rep. 2021 May 13. 11(1): 10249
      We have previously shown that the DBA/2J versus AKR/J mouse strain is associated with decreased autophagy-mediated lysosomal hydrolysis of cholesterol esters. Our objective was to determine differences in lysosome function in AKR/J and DBA/2J macrophages, and identify the responsible genes. Using a novel dual-labeled indicator of lysosome function, DBA/2J versus AKR/J bone marrow derived macrophages had significantly decreased lysosome function. We performed quantitative trait loci mapping of lysosome function in bone marrow macrophages from an AKR/J × DBA/2J strain intercross. Four distinct lysosome function loci were identified, which we named macrophage lysosome function modifier (Mlfm) Mlfm1 through Mlfm4. The strongest locus Mlfm1 harbors the Gpnmb gene, which has been shown to recruit autophagy protein light chain 3 to autophagosomes for lysosome fusion. The parental DBA/2J strain has a nonsense variant in Gpnmb. siRNA knockdown of Gpnmb in AKR/J macrophages decreased lysosome function, and Gpnmb deletion through CRISP/Cas9 editing in RAW 264.7 mouse macrophages also demonstrated a similar result. Furthermore, a DBA/2 substrain, called DBA/2J-Gpnmb+/SjJ, contains the wildtype Gpnmb gene, and macrophages from this Gpnmb-preserved DBA/2 substrain exhibited recovered lysosome function. In conclusion, we identified Gpnmb as a causal modifier gene of lysosome function in this strain pair.
    DOI:  https://doi.org/10.1038/s41598-021-89800-5
  34. Mol Cell Biol. 2021 May 10. pii: MCB.00662-20. [Epub ahead of print]
      In the budding yeast Saccharomyces cerevisiae an mRNA, called HAC1, exists in a translationally repressed form in the cytoplasm. Under conditions of cellular stress, such as when unfolded proteins accumulate inside the endoplasmic reticulum (ER), an RNase Ire1 removes an intervening sequence (intron) from the HAC1 mRNA by non-conventional cytosolic splicing. Removal of the intron results in translational de-repression of HAC1 mRNA and production of a transcription factor that activates expressions of many enzymes and chaperones to increase the protein-folding capacity of the cell. Here, we show that Ire1-mediated RNA cleavage requires Watson-Crick base pairs in two RNA hairpins, which are located at the HAC1 mRNA exon-intron junctions. Then, we show that the translational de-repression of HAC1 mRNA can occur independent of cytosolic splicing. These results are obtained from HAC1 variants that translated an active Hac1 protein from the un-spliced mRNA. Additionally, we show that the phosphatidylinositol-3-kinase Vps34 and the nutrient-sensing kinases TOR and GCN2 are key regulators of HAC1 mRNA translation and consequently the ER stress responses. Collectively, our data suggest that the cytosolic splicing and the translational de-repression of HAC1 mRNA are coordinated by unique and parallel networks of signaling pathways.
    DOI:  https://doi.org/10.1128/MCB.00662-20