Alzheimers Dement. 2025 Dec;21(12): e70977
Despoina Goniotaki,
Maximilian Hausherr,
Steven Lynham,
Ayushin Ale,
George Chennell,
Stefania Marcotti,
Katrin Marcus,
Wendy Noble,
Diane P Hanger,
Graham Fraser,
Deepak P Srivastava.
INTRODUCTION: Tauopathies involve progressive accumulation of abnormal tau species that disrupt the autophagy-lysosomal pathway (ALP), critical for degrading intracellular macromolecules and aggregates, leading to toxicity and cell death. This study examines how overexpression of the N-terminally truncated Tau35 protein affects proteolytic pathways, including autophagy and endo-lysosomal processes.
METHODS: Using the Tau35 mouse model and SH-SY5Y human neuroblastoma cells stably expressing Tau35 or full-length tau, we assessed protein degradation and lysosomal function via Western blotting, proteomics of lysosome-enriched brain fractions, cathepsin activity assays, endocytosis/proteolysis assays, and live-cell imaging using LysoTracker.
RESULTS: We identified early endo-lysosomal alterations associated with Tau35 expression, including increased endocytosis, disrupted autophagic flux, proteolytic impairment, and lysosomal motility defects.
DISCUSSION: These findings extend previous research by elucidating Tau35-induced dysfunction in intracellular degradation systems and offer mechanistic insight into tauopathy progression. This work provides a foundation for developing targeted therapies to restore acidification, proteostasis, and lysosomal function in tauopathies.
HIGHLIGHTS: Tau35, an N-terminally truncated tau fragment, disrupts proteolytic pathways: We show that Tau35 overexpression leads to significant alterations in autophagy and endo-lysosomal function. Endo-lysosomal dysfunction is an early pathological event: Our findings demonstrate early-stage increases in endocytosis, impaired proteolytic activity, altered autophagic flux, and disrupted lysosomal motility in Tau35-expressing models. In vivo and in vitro models confirm consistent pathogenic signatures: Parallel studies in a Tau35 mouse model and SH-SY5Y cells reveal converging cellular and molecular dysfunctions. Lysosome-enriched proteomics reveals novel pathway alterations: Proteomic profiling of lysosomal fractions identifies Tau35-specific protein dysregulation contributing to disease pathology. Mechanistic insights into tauopathy progression: These results provide a mechanistic understanding of how truncated tau species contribute to neuronal dysfunction, offering a rationale for targeting endo-lysosomal pathways in therapeutic development.
Keywords: LysoTracker; SH‐SY5Y cells; Tau35; autophagy‐lysosomal pathway; endocytosis; live‐cell imaging; mice; proteolysis; proteomics; tauopathies