bims-lypmec Biomed News
on Lysosomal positioning and metabolism in cardiomyocytes
Issue of 2024–08–11
four papers selected by
Satoru Kobayashi, New York Institute of Technology



  1. EMBO J. 2024 Aug 05.
      Lysosomes play a pivotal role in coordinating macromolecule degradation and regulating cell growth and metabolism. Despite substantial progress in identifying lysosomal signaling proteins, understanding the pathways that synchronize lysosome functions with changing cellular demands remains incomplete. This study uncovers a role for TANK-binding kinase 1 (TBK1), well known for its role in innate immunity and organelle quality control, in modulating lysosomal responsiveness to nutrients. Specifically, we identify a pool of TBK1 that is recruited to lysosomes in response to elevated amino acid levels. This lysosomal TBK1 phosphorylates Rab7 on serine 72. This is critical for alleviating Rab7-mediated inhibition of amino acid-dependent mTORC1 activation. Furthermore, a TBK1 mutant (E696K) associated with amyotrophic lateral sclerosis and frontotemporal dementia constitutively accumulates at lysosomes, resulting in elevated Rab7 phosphorylation and increased mTORC1 activation. This data establishes the lysosome as a site of amino acid regulated TBK1 signaling that is crucial for efficient mTORC1 activation. This lysosomal pool of TBK1 has broader implications for lysosome homeostasis, and its dysregulation could contribute to the pathogenesis of ALS-FTD.
    Keywords:  ALS-FTD; Lysosome; Nutrient Sensing; TBK1; mTORC1
    DOI:  https://doi.org/10.1038/s44318-024-00180-8
  2. Nat Rev Mol Cell Biol. 2024 Aug 06.
      Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
    DOI:  https://doi.org/10.1038/s41580-024-00757-5
  3. J Cardiovasc Aging. 2024 Apr;pii: 18. [Epub ahead of print]4(2):
      Cellular senescence in cardiomyocytes, characterized by cell cycle arrest, resistance to apoptosis, and the senescence-associated secretory phenotype, occurs during aging and in response to various stresses, such as hypoxia/reoxygenation, ischemia/reperfusion, myocardial infarction (MI), pressure overload, doxorubicin treatment, angiotensin II, diabetes, and thoracic irradiation. Senescence in the heart has both beneficial and detrimental effects. Premature senescence of myofibroblasts has salutary effects during MI and pressure overload. On the other hand, persistent activation of senescence in cardiomyocytes precipitates cardiac dysfunction and adverse remodeling through paracrine mechanisms during MI, myocardial ischemia/reperfusion, aging, and doxorubicin-induced cardiomyopathy. Given the adverse roles of senescence in many conditions, specific removal of senescent cells, i.e., senolysis, is of great interest. Senolysis can be achieved using senolytic drugs (such as Navitoclax, Dasatinib, and Quercetin), pharmacogenetic approaches (including INK-ATTAC and AP20187, p16-3MR and Ganciclovir, p16 ablation, and p16-LOX-ATTAC and Cre), and immunogenetic interventions (CAR T cells or senolytic vaccination). In order to enhance the specificity and decrease the off-target effects of senolytic approaches, investigation into the mechanisms through which cardiomyocytes develop and/or maintain the senescent state is needed.
    Keywords:  Aging; senescence; senescence-associated secretory phenotype; senolysis
    DOI:  https://doi.org/10.20517/jca.2024.06
  4. Acta Pharmacol Sin. 2024 Aug 05.
      Targeted protein degradation technology has gained substantial momentum over the past two decades as a revolutionary strategy for eliminating pathogenic proteins that are otherwise refractory to treatment. Among the various approaches developed to harness the body's innate protein homeostasis mechanisms for this purpose, lysosome targeting chimeras (LYTACs) that exploit the lysosomal degradation pathway by coupling the target proteins with lysosome-trafficking receptors represent the latest innovation. These chimeras are uniquely tailored to degrade proteins that are membrane-bound and extracellular, encompassing approximately 40% of all proteome. Several novel LYTAC formulas have been developed recently, providing valuable insights for the design and development of therapeutic degraders. This review delineates the recent progresses of LYTAC technology, its practical applications, and the factors that dictate target degradation efficiency. The potential and emerging trends of this technology are discussed as well. LYTAC technology offers a promising avenue for targeted protein degradation, potentially revolutionizing the therapeutic landscape for numerous diseases.
    Keywords:  extracellular protein; lysosome targeting chimera; lysosome-trafficking receptor; membrane protein; targeted protein degradation
    DOI:  https://doi.org/10.1038/s41401-024-01364-y