Anal Chim Acta. 2024 May 08. pii: S0003-2670(24)00307-6. [Epub ahead of print]1302 342506
Rui Yang,
Wei He,
Changxin Zhu,
Xifeng Yang,
Yawei Kuang,
Tao Zhu,
Jingyang Xu,
Yuang Zhao,
Tingwang Jiang,
Yushen Liu,
Mengmeng Wei.
BACKGROUND: Mitophagy plays indispensable roles in maintaining intracellular homeostasis in most eukaryotic cells by selectively eliminating superfluous components or damaged organelles. Thus, the co-operation of mitochondrial probes and lysosomal probes was presented to directly monitor mitophagy in dual colors. Nowadays, most of the lysosomal probes are composed of groups sensitive to pH, such as morpholine, amine and other weak bases. However, the pH in lysosomes would fluctuate in the process of mitophagy, leading to the optical interference. Thus, it is crucial to develop a pH-insensitive probe to overcome this tough problem to achieve exquisite visualization of mitophagy.
RESULTS: In this study, we rationally prepared a pH-independent lysosome probe to reduce the optical interference in mitophagy, and thus the process of mitophagy could be directly monitored in dual color through cooperation between IVDI and MTR, depending on Förster resonance energy transfer mechanism. IVDI shows remarkable fluorescence enhancement toward the increase of viscosity, and the fluorescence barely changes when pH varies. Due to the sensitivity to viscosity, the probe can visualize micro-viscosity alterations in lysosomes without washing procedures, and it showed better imaging properties than LTR. Thanks to the inertia of IVDI to pH, IVDI can exquisitely monitor mitophagy with MTR by FRET mechanism despite the changes of lysosomal pH in mitophagy, and the reduced fluorescence intensity ratio of green and red channels can indicate the occurrence of mitophagy. Based on the properties mentioned above, the real-time increase of micro-viscosity in lysosomes during mitophagy was exquisitely monitored through employing IVDI.
SIGNIFICANCE AND NOVELTY: Compared with the lysosomal fluorescent probes sensitive to pH, the pH-inert probe could reduce the influence of pH variation during mitophagy to achieve exquisite visualization of mitophagy in real-time. Besides, the probe could monitor the increase of lysosomal micro-viscosity in mitophagy. So, the probe possesses tremendous potential in the visualization of dynamic changes related to lysosomes in various physiological processes.
Keywords: Exquisitely long-term visualization; FRET mechanism; Lysosomal rotor; Mitophagy; pH-independent