bims-lypmec Biomed News
on Lysosomal positioning and metabolism in cardiomyocytes
Issue of 2022–10–16
six papers selected by
Satoru Kobayashi, New York Institute of Technology



  1. J Cell Biol. 2023 Jan 02. pii: e202203045. [Epub ahead of print]222(1):
      At the trans-Golgi, complex traffic connections exist to the endolysosomal system additional to the main Golgi-to-plasma membrane secretory route. Here, we investigated three hits in a Drosophila screen displaying secretory cargo accumulation in autophagic vesicles: ESCRT-III component Vps20, SNARE-binding Rop, and lysosomal pump subunit VhaPPA1-1. We found that Vps20, Rop, and lysosomal markers localize near the trans-Golgi. Furthermore, we document that the vicinity of the trans-Golgi is the main cellular location for lysosomes and that early, late, and recycling endosomes associate as well with a trans-Golgi-associated degradative compartment where basal microautophagy of secretory cargo and other materials occurs. Disruption of this compartment causes cargo accumulation in our hits, including Munc18 homolog Rop, required with Syx1 and Syx4 for Rab11-mediated endosomal recycling. Finally, besides basal microautophagy, we show that the trans-Golgi-associated degradative compartment contributes to the growth of autophagic vesicles in developmental and starvation-induced macroautophagy. Our results argue that the fly trans-Golgi is the gravitational center of the whole endomembrane system.
    DOI:  https://doi.org/10.1083/jcb.202203045
  2. J Cell Biol. 2022 Nov 07. pii: e202109133. [Epub ahead of print]221(11):
      Lysosomes mediate hydrolase-catalyzed macromolecule degradation to produce building block catabolites for reuse. Lysosome function requires an osmo-sensing machinery that regulates osmolytes (ions and organic solutes) and water flux. During hypoosmotic stress or when undigested materials accumulate, lysosomes become swollen and hypo-functional. As a membranous organelle filled with cargo macromolecules, catabolites, ions, and hydrolases, the lysosome must have mechanisms that regulate its shape and size while coordinating content exchange. In this review, we discussed the mechanisms that regulate lysosomal fusion and fission as well as swelling and condensation, with a focus on solute and water transport mechanisms across lysosomal membranes. Lysosomal H+, Na+, K+, Ca2+, and Cl- channels and transporters sense trafficking and osmotic cues to regulate both solute flux and membrane trafficking. We also provide perspectives on how lysosomes may adjust the volume of themselves, the cytosol, and the cytoplasm through the control of lysosomal solute and water transport.
    DOI:  https://doi.org/10.1083/jcb.202109133
  3. Cardiovasc Diabetol. 2022 Oct 11. 21(1): 205
       BACKGROUND: Diabetic cardiomyopathy is characterized by left ventricle dysfunction, cardiomyocyte apoptosis, and interstitial fibrosis and is a serious complication of diabetes mellitus (DM). Autophagy is a mechanism that is essential for maintaining normal heart morphology and function, and its dysregulation can produce pathological effects on diabetic hearts. Neuregulin-4 (Nrg4) is an adipokine that exerts protective effects against metabolic disorders and insulin resistance. The aim of this study was to explore whether Nrg4 could ameliorate DM-induced myocardial injury by regulating autophagy.
    METHODS: Four weeks after the establishment of a model of type 1 diabetes in mice, the mice received Nrg4 treatment (with or without an autophagy inhibitor) for another 4 weeks. The cardiac functions, histological structures and cardiomyocyte apoptosis were investigated. Autophagy-related protein levels along with related signalling pathways that regulate autophagy were evaluated. In addition, the effects of Nrg4 on autophagy were also determined in cultured primary cardiomyocytes.
    RESULTS: Nrg4 alleviated myocardial injury both in vivo and in vitro. The autophagy level was decreased in type 1 diabetic mice, and Nrg4 intervention reactivated autophagy. Furthermore, Nrg4 intervention was found to activate autophagy via the AMPK/mTOR signalling pathway. Moreover, when autophagy was suppressed or the AMPK/mTOR pathway was inhibited, the beneficial effects of Nrg4 were diminished.
    CONCLUSION: Nrg4 intervention attenuated diabetic cardiomyopathy by promoting autophagy in type 1 diabetic mice. Additionally, Nrg4 induced autophagy via the AMPK/mTOR signalling pathway.
    Keywords:  Autophagy; Diabetic cardiomyopathy; Neuregulin-4; Signalling pathway
    DOI:  https://doi.org/10.1186/s12933-022-01643-0
  4. Nat Metab. 2022 Oct 10.
      The activity of 5'-adenosine monophosphate-activated protein kinase (AMPK) is inversely correlated with the cellular availability of glucose. When glucose levels are low, the glycolytic enzyme aldolase is not bound to fructose-1,6-bisphosphate (FBP) and, instead, signals to activate lysosomal AMPK. Here, we show that blocking FBP binding to aldolase with the small molecule aldometanib selectively activates the lysosomal pool of AMPK and has beneficial metabolic effects in rodents. We identify aldometanib in a screen for aldolase inhibitors and show that it prevents FBP from binding to v-ATPase-associated aldolase and activates lysosomal AMPK, thereby mimicking a cellular state of glucose starvation. In male mice, aldometanib elicits an insulin-independent glucose-lowering effect, without causing hypoglycaemia. Aldometanib also alleviates fatty liver and nonalcoholic steatohepatitis in obese male rodents. Moreover, aldometanib extends lifespan and healthspan in both Caenorhabditis elegans and mice. Taken together, aldometanib mimics and adopts the lysosomal AMPK activation pathway associated with glucose starvation to exert physiological roles, and might have potential as a therapeutic for metabolic disorders in humans.
    DOI:  https://doi.org/10.1038/s42255-022-00640-7
  5. Nat Commun. 2022 Oct 12. 13(1): 6023
      Changes in sub-cellular pH play a key role in metabolism, membrane transport, and triggering cargo release from therapeutic delivery systems. Most methods to measure pH rely on intensity changes of pH sensitive fluorophores, however, these measurements are hampered by high uncertainty in the inferred pH and the need for multiple fluorophores. To address this, here we combine pH dependant fluorescent lifetime imaging microscopy (pHLIM) with deep learning to accurately quantify sub-cellular pH in individual vesicles. We engineer the pH sensitive protein mApple to localise in the cytosol, endosomes, and lysosomes, and demonstrate that pHLIM can rapidly detect pH changes induced by drugs such as bafilomycin A1 and chloroquine. We also demonstrate that polyethylenimine (a common transfection reagent) does not exhibit a proton sponge effect and had no measurable impact on the pH of endocytic vesicles. pHLIM is a simple and quantitative method that will help to understand drug action and disease progression.
    DOI:  https://doi.org/10.1038/s41467-022-33348-z
  6. EMBO J. 2022 Oct 10. e111115
      Mitochondria and peroxisomes are closely related metabolic organelles, both in terms of origin and in terms of function. Mitochondria and peroxisomes can also be turned over by autophagy, in processes termed mitophagy and pexophagy, respectively. However, despite their close relationship, it is not known if both organelles are turned over under similar conditions, and if so, how this might be coordinated molecularly. Here, we find that multiple selective autophagy pathways are activated upon iron chelation and show that mitophagy and pexophagy occur in a BNIP3L/NIX-dependent manner. We reveal that the outer mitochondrial membrane-anchored NIX protein, previously described as a mitophagy receptor, also independently localises to peroxisomes and drives pexophagy. We show this process happens in vivo, with mouse tissue that lacks NIX having a higher peroxisomal content. We further show that pexophagy is stimulated under the same physiological conditions that activate mitophagy, including cardiomyocyte and erythrocyte differentiation. Taken together, our work uncovers a dual role for NIX, not only in mitophagy but also in pexophagy, thus illustrating the interconnection between selective autophagy pathways.
    Keywords:  autophagy; mitochondria; mitophagy; peroxisomes; pexophagy
    DOI:  https://doi.org/10.15252/embj.2022111115