bims-lypmec Biomed News
on Lysosomal positioning and metabolism in cardiomyocytes
Issue of 2022‒10‒02
five papers selected by
Satoru Kobayashi
New York Institute of Technology


  1. Anal Biochem. 2022 Sep 24. pii: S0003-2697(22)00387-6. [Epub ahead of print] 114927
      Eukaryotic cells are compartmentalized into membrane-bound organelles, allowing each organelle to maintain the specialized conditions needed for their specific functions. One of the features that change between organelles is lumenal pH. In the endocytic and secretory pathways, lumenal pH is controlled by isoforms and concentration of the vacuolar-type H+-ATPase (V-ATPase). In the endolysosomal pathway, copies of complete V-ATPase complexes accumulate as membranes mature from early endosomes to late endosomes and lysosomes. Thus, each compartment becomes more acidic as maturation proceeds. Lysosome acidification is essential for the breakdown of macromolecules delivered from endosomes as well as cargo from different autophagic pathways, and dysregulation of this process is linked to various diseases. Thus, it is important to understand the regulation of the V-ATPase. Here we describe a high-throughput method for screening inhibitors/activators of V-ATPase activity using Acridine Orange (AO) as a fluorescent reporter for acidified yeast vacuolar lysosomes. Through this method, the acidification of purified vacuoles can be measured in real-time in half-volume 96-well plates or a larger 384-well format. This not only reduces the cost of expensive low abundance reagents, but it drastically reduces the time needed to measure individual conditions in large volume cuvettes.
    Keywords:  Acridine orange; Gadolinium; Lanthanum; Lysosome; Nickel; V-ATPase; Vph1
    DOI:  https://doi.org/10.1016/j.ab.2022.114927
  2. EMBO Rep. 2022 Sep 26. e54603
      Aberrant activation of inflammation signaling triggered by tumor necrosis factor α (TNF-α), interleukin-1 (IL-1), and interleukin-17 (IL-17) is associated with immunopathology. Here, we identify neural precursor cells expressed developmentally down-regulated gene 4-like (NEDD4L), a HECT type E3 ligase, as a common negative regulator of signaling induced by TNF-α, IL-1, and IL-17. NEDD4L modulates the degradation of mitogen-activated protein kinase kinase kinase 2 (MEKK2) via constitutively and directly binding to MEKK2 and promotes its poly-ubiquitination. In interleukin-17 receptor (IL-17R) signaling, Nedd4l knockdown or deficiency enhances IL-17-induced p38 and NF-κB activation and the production of proinflammatory cytokines and chemokines in a MEKK2-dependent manner. We further show that IL-17-induced MEKK2 Ser520 phosphorylation is required not only for downstream p38 and NF-κB activation but also for NEDD4L-mediated MEKK2 degradation and the subsequent shutdown of IL-17R signaling. Importantly, Nedd4l-deficient mice show increased susceptibility to IL-17-induced inflammation and aggravated symptoms of experimental autoimmune encephalomyelitis (EAE) in IL-17R signaling-dependent manner. These data suggest that NEDD4L acts as an inhibitor of IL-17R signaling, which ameliorates the pathogenesis of IL-17-mediated autoimmune diseases.
    Keywords:  IL-17R signaling; MEKK2; NEDD4L; inflammation; ubiquitination
    DOI:  https://doi.org/10.15252/embr.202254603
  3. Bioessays. 2022 Sep 30. e2200151
      In recent years, membrane contact sites (MCS), which mediate interactions between virtually all subcellular organelles, have been extensively characterized and shown to be essential for intracellular communication. In this review essay, we focus on an emerging topic: the regulation of MCS. Focusing on the tether proteins themselves, we discuss some of the known mechanisms which can control organelle tethering events and identify apparent common regulatory hubs, such as the VAP interface at the endoplasmic reticulum (ER). We also highlight several currently hypothetical concepts, including the idea of tether oligomerization and redox regulation playing a role in MCS formation. We identify gaps in our current understanding, such as the identity of the majority of kinases/phosphatases involved in tether modification and conclude that a holistic approach-incorporating the formation of multiple MCS, regulated by interconnected regulatory modulators-may be required to fully appreciate the true complexity of these fascinating intracellular communication systems.
    Keywords:  FFAT motif; membrane contact sites; oligomerization; organelle interactions; phosphorylation; redox-related modifications; ubiquitination
    DOI:  https://doi.org/10.1002/bies.202200151
  4. J Am Heart Assoc. 2022 Sep 29. e026728
      Background Mechanistic insights of glucagon-like peptide-1 receptor agonists remain incompletely identified, despite the efficacy in heart failure observed in clinical trials. Here, we evaluated the effects of dulaglutide on heart complications and illuminated its underlying mechanism. Methods and Results We used mice with high-fat diet (HFD)/streptozotocin-induced type 2 diabetes to investigate the effects of dulaglutide upon diabetic cardiac dysfunction. After the onset of diabetes, control and diabetic mice were injected subcutaneously with either dulaglutide (type 2 diabetes-dulaglutide and control-dulaglutide groups) or vehicle (type 2 diabetes-vehicle and control-vehicle groups) for 8 weeks. Subsequently, heart characteristics, cardiometabolic profile and mitochondrial morphology and function were evaluated. Also, we analyzed the effects of dulaglutide on neonatal rat ventricular myocytes treated with high glucose plus palmitic acid. In addition, wild type and AMP-activated protein kinase α2 mutant mice were used to evaluate the underlying mechanism. In type 2 diabetes mouse model, dulaglutide ameliorated insulin resistance, improved glucose tolerance, reduced hyperlipidemia, and promoted fatty acid use in the myocardium. Dulaglutide treatment functionally attenuated cardiac remodeling and dysfunction and promoted metabolic reprogramming in diabetic mice. Furthermore, dulaglutide improved mitochondria fragmentation in myocytes, and simultaneously reinstated mitochondrial morphology and function in diabetic hearts. We also found that dulaglutide preserved AMP-activated protein kinase α2-dependent mitochondrial homeostasis, and the protective effects of dulaglutide on diabetic heart was almost abated by AMP-activated protein kinase α2 knockout. Conclusions Dulaglutide prevents diabetic heart failure and favorably affects myocardial metabolic remodeling by impeding mitochondria fragmentation, and we suggest a potential strategy to develop a long-term activation of glucagon-like peptide-1 receptor-based therapy to treat diabetes associated cardiovascular complications.
    Keywords:  dulaglutide; heart failure; metabolic remodeling; mitochondria; type 2 diabetes
    DOI:  https://doi.org/10.1161/JAHA.122.026728
  5. Commun Biol. 2022 Sep 27. 5(1): 1018
      The formation of wound epithelium initiates regeneration of amputated tail in Gekko japonicus. Energy metabolism is indispensable for the growth of living creatures and typically influenced by temperature. In this study, we reveal that low temperature lowers energy metabolism level and inhibits the regeneration of amputated tails of Gekko japonicus. We further find that low temperature attenuates the activation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) in regenerated tissues upon injury signals, and the inhibition of Akt hinders proliferation of the wound epithelium. Additionally, wingless/integrated (Wnt) inhibition suppresses epithelium proliferation and formation by inhibiting Akt activation. Finally, low temperature elevates the activity of adenylate-activated kinase (AMPK) pathway and in turn attenuates wound epithelium formation. Meanwhile, either mTOR downregulation or AMPK upregulation is associated with worse wound epithelium formation. Summarily, low temperature restricts wound epithelium formation by influencing energy sensory pathways including Akt/mTOR and AMPK signaling, which is also modulated by injury induced Wnt signal. Our results provide a mechanism that incorporates the injury signals with metabolic pathway to facilitate regeneration.
    DOI:  https://doi.org/10.1038/s42003-022-04004-5