bims-lymeca Biomed News
on Lysosome metabolism in cancer
Issue of 2023‒04‒02
five papers selected by
Harilaos Filippakis
University of New England


  1. EMBO Mol Med. 2023 Mar 29. e16877
      Birt-Hogg-Dubé (BHD) syndrome is an inherited familial cancer syndrome characterized by the development of cutaneous lesions, pulmonary cysts, renal tumors and cysts and caused by loss-of-function pathogenic variants in the gene encoding the tumor-suppressor protein folliculin (FLCN). FLCN acts as a negative regulator of TFEB and TFE3 transcription factors, master controllers of lysosomal biogenesis and autophagy, by enabling their phosphorylation by the mechanistic Target Of Rapamycin Complex 1 (mTORC1). We have previously shown that deletion of Tfeb rescued the renal cystic phenotype of kidney-specific Flcn KO mice. Using Flcn/Tfeb/Tfe3 double and triple KO mice, we now show that both Tfeb and Tfe3 contribute, in a differential and cooperative manner, to kidney cystogenesis. Remarkably, the analysis of BHD patient-derived tumor samples revealed increased activation of TFEB/TFE3-mediated transcriptional program and silencing either of the two genes rescued tumorigenesis in human BHD renal tumor cell line-derived xenografts (CDXs). Our findings demonstrate in disease-relevant models that both TFEB and TFE3 are key drivers of renal tumorigenesis and suggest novel therapeutic strategies based on the inhibition of these transcription factors.
    Keywords:  BHD; TFE3; TFEB; cysts; kidney cancer
    DOI:  https://doi.org/10.15252/emmm.202216877
  2. EMBO J. 2023 Mar 27. e111241
      The accumulation of senescent cells is recognised as a driver of tissue and organismal ageing. One of the gold-standard hallmarks of a senescent cell is an increase in lysosomal content, as measured by senescence-associated β-galactosidase (Senβ-Gal) activity. The lysosome plays a central role in integrating mitogenic and stress cues to control cell metabolism, which is known to be dysregulated in senescence. Despite this, little is known about the cause and consequence of lysosomal biogenesis in senescence. We find here that lysosomes in senescent cells are dysfunctional; they have higher pH, increased evidence of membrane damage and reduced proteolytic capacity. The significant increase in lysosomal content is however sufficient to maintain degradative capacity of the cell to a level comparable to proliferating control cells. We demonstrate that increased nuclear TFEB/TFE3 supports lysosome biogenesis, is a hallmark of multiple forms of senescence and is required for senescent cell survival. TFEB/TFE3 are hypo-phosphorylated and show constitutive nuclear localisation in senescence. Evidence suggests that several pathways may contribute to TFEB/TFE3 dysregulation in senescence.
    Keywords:  TFEB; autophagy; lysosome; senescence
    DOI:  https://doi.org/10.15252/embj.2022111241
  3. Bioessays. 2023 Mar 30. e2200214
      The Arf family proteins are best known for their roles in the vesicle biogenesis. However, they also play fundamental roles in a wide range of cellular regulation besides vesicular trafficking, such as modulation of lipid metabolic enzymes, cytoskeleton remodeling, ciliogenesis, lysosomal, and mitochondrial morphology and functions. Growing studies continue to expand the downstream effector landscape of Arf proteins, especially for the less-studied members, revealing new biological functions, such as amino acid sensing. Experiments with cutting-edge technologies and in vivo functional studies in the last decade help to provide a more comprehensive view of Arf family functions. In this review, we summarize the cellular functions that are regulated by at least two different Arf members with an emphasis on those beyond vesicle biogenesis.
    Keywords:  Arf GTPase; amino acid sensing; cilium; cytoskeleton; lipid; lysosome; vesicle
    DOI:  https://doi.org/10.1002/bies.202200214
  4. bioRxiv. 2023 Mar 24. pii: 2023.03.22.533675. [Epub ahead of print]
    Proteostasis Consortium
      The condition of having a healthy, functional proteome is known as protein homeostasis, or proteostasis. Establishing and maintaining proteostasis is the province of the proteostasis network, approximately 2,700 components that regulate protein synthesis, folding, localization, and degradation. The proteostasis network is a fundamental entity in biology that is essential for cellular health and has direct relevance to many diseases of protein conformation. However, it is not well defined or annotated, which hinders its functional characterization in health and disease. In this series of manuscripts, we aim to operationally define the human proteostasis network by providing a comprehensive, annotated list of its components. We provided in a previous manuscript a list of chaperones and folding enzymes as well as the components that make up the machineries for protein synthesis, protein trafficking into and out of organelles, and organelle-specific degradation pathways. Here, we provide a curated list of 838 unique high-confidence components of the autophagy-lysosome pathway, one of the two major protein degradation systems in human cells.
    DOI:  https://doi.org/10.1101/2023.03.22.533675
  5. MedComm (2020). 2023 Apr;4(2): e218
      Cancer cells characterized by uncontrolled growth and proliferation require altered metabolic processes to maintain this characteristic. Metabolic reprogramming is a process mediated by various factors, including oncogenes, tumor suppressor genes, changes in growth factors, and tumor-host cell interactions, which help to meet the needs of cancer cell anabolism and promote tumor development. Metabolic reprogramming in tumor cells is dynamically variable, depending on the tumor type and microenvironment, and reprogramming involves multiple metabolic pathways. These metabolic pathways have complex mechanisms and involve the coordination of various signaling molecules, proteins, and enzymes, which increases the resistance of tumor cells to traditional antitumor therapies. With the development of cancer therapies, metabolic reprogramming has been recognized as a new therapeutic target for metabolic changes in tumor cells. Therefore, understanding how multiple metabolic pathways in cancer cells change can provide a reference for the development of new therapies for tumor treatment. Here, we systemically reviewed the metabolic changes and their alteration factors, together with the current tumor regulation treatments and other possible treatments that are still under investigation. Continuous efforts are needed to further explore the mechanism of cancer metabolism reprogramming and corresponding metabolic treatments.
    Keywords:  cancer metabolism; cancer therapy; glycolysis; metabolic reprogramming
    DOI:  https://doi.org/10.1002/mco2.218