bims-lycede Biomed News
on Lysosome-dependent cell death
Issue of 2025–05–11
six papers selected by
Sofía Peralta, Universidad Nacional de Cuyo



  1. Mol Cell Biol. 2025 May 09. 1-13
      Lysosomes are organelles that play pivotal roles in macromolecule digestion, signal transduction, autophagy, and cellular homeostasis. Lysosome instability, including the inhibition of lysosomal intracellular activity and the leakage of their contents, is associated with various pathologies, including cancer, neurodegenerative diseases, inflammatory diseases and infections. These lysosomal-related pathologies highlight the significance of factors contributing to lysosomal dysfunction. The vulnerability of the lysosomal membrane and its components to internal and external stimuli make lysosomes particularly susceptible to damage. Cells are equipped with mechanisms to repair or degrade damaged lysosomes to prevent cell death. Understanding the factors influencing lysosome stabilization and damage repair is essential for developing effective therapeutic interventions for diseases. This review explores the factors affecting lysosome acidification, membrane integrity, and functional homeostasis and examines the underlying mechanisms of lysosomal damage repair. In addition, we summarize how various risk factors impact lysosomal activity and cell fate.
    Keywords:  ESCRT; Lysosome stabilization; ROS; lipid peroxidation; lysophagy; lysosomal membrane permeabilization
    DOI:  https://doi.org/10.1080/10985549.2025.2494762
  2. J Mater Chem B. 2025 May 08.
      Lysosomes and the endoplasmic reticulum (ER) are vital for cellular homeostasis, degradation, and signaling, making them key imaging targets. However, existing fluorescent probes suffer from limitations such as pH sensitivity, poor photostability, and cytotoxicity. To overcome these challenges, we developed two red-emitting fluorophores, DM and MM, based on a rigid DCM scaffold with morpholine linkers. DM rapidly localizes to lysosomes within 10 minutes, exhibiting exceptional photostability, pH insensitivity, and resilience in live and fixed cells. MM initially targets the ER before redistributing to lysosomes, enabling studies of inter-organelle dynamics and lysosomal maturation. Both probes, excitable at 561 nm, emit in the red spectral region, reducing autofluorescence and phototoxicity while allowing deep tissue imaging. DM efficiently tracks lysosomal dynamics under normal and stressed conditions, including mitophagy and lysosome-mitochondria interactions. MM's dual-targeting behavior provides insights into ER-lysosome crosstalk, crucial for cellular signaling. Both dyes exhibit negligible cytotoxicity (up to 100 μM), ensuring prolonged imaging without disrupting the cellular function. Their rigid scaffold imparts high stability, making them versatile tools for studying lysosomal and ER-associated processes. DM and MM set a new standard for dynamic organelle imaging, advancing biomedical research on lysosomal biology and disease mechanisms.
    DOI:  https://doi.org/10.1039/d5tb00296f
  3. FEBS Lett. 2025 May 08.
      Autophagy is a catabolic process by which cells maintain cellular homeostasis through the degradation of dysfunctional cytoplasmic components, such as toxic misfolded proteins and damaged organelles, within the lysosome. It is a multistep process that is tightly regulated by nutrient, energy, and stress-sensing mechanisms. Autophagy plays a pivotal role in various biological processes, including protein and organelle quality control, defense against pathogen infections, cell metabolism, and immune surveillance. As a result, autophagy dysfunction is linked to a variety of pathological conditions. The role of autophagy in cancer is complex and dynamic. Depending on the context, autophagy can have both tumor-suppressive and pro-tumorigenic effects. In contrast, its role is more clearly defined in protein conformational disorders, where autophagy serves as a mechanism to reduce toxic protein aggregation, thereby improving cellular homeostasis. Because autophagy-based therapies hold promising potential for the treatment of cancer and protein conformational disorders, this review will highlight the latest findings and advancements in these areas.
    Keywords:  RAS‐ and RAF‐induced cancer; alpha‐1 antitrypsin deficiency; autophagy; autophagy inhibitors; clinical trials; neurodegenerative disorders; pancreatic ductal adenocarcinoma; protein misfolding; proteinopathies
    DOI:  https://doi.org/10.1002/1873-3468.70061
  4. Curr Biol. 2025 May 05. pii: S0960-9822(25)00384-7. [Epub ahead of print]35(9): R320-R322
      Maurizio Molinari introduces ER-to-lysosome-associated degradation - the autophagic and non-autophagic pathways that deliver ERAD-resistant misfolded proteins to the lysosome for degradation to maintain cellular proteostasis.
    DOI:  https://doi.org/10.1016/j.cub.2025.03.068
  5. Int J Mol Sci. 2025 Apr 10. pii: 3586. [Epub ahead of print]26(8):
      Mutations in GNPTAB underlie mucolipidosis II and mucolipidosis III α/β, which are inherited lysosomal storage disorders caused by a defective UDP-N-acetylglucosamine:lysosomal-enzyme N-acetylglucosamine phosphotransferase. As a result, newly synthesized acid hydrolases fail to acquire Mannose-6-Phosphate (Man-6-P) sorting signals, or do so to a lesser extent, and exhibit an impaired trafficking to lysosomes. Interestingly, we found that GNPTAB knockout HeLa cells are resistant to several cytotoxic agents: doxorubicin, chloroquine, staurosporine and paclitaxel. While we detected an increased trapping of weak bases in the expanded lysosomal population of these cells, which could reduce the effect of doxorubicin and chloroquine; the decreased cell response to staurosporine and paclitaxel suggested the involvement of alternative resistance mechanisms. Indeed, further investigation revealed that the hyperactivation of the Insulin-like Growth Factor 1 Receptor (IGF1R) pathway is a central player in the apoptosis resistance exhibited by Man-6-P sorting deficient cells.
    Keywords:  GNPTAB; IGF1R; apoptosis; lysosomes; mannose-6-phosphate, M6PR; mucolipidosis II
    DOI:  https://doi.org/10.3390/ijms26083586
  6. Nat Commun. 2025 May 07. 16(1): 4259
      Galectins play vital roles in cellular processes such as adhesion, communication, and survival, yet the mechanisms underlying their unconventional secretion remain poorly understood. This study identifies ATG9A, a core autophagy protein, as a key regulator of galectin-9 secretion via a mechanism independent of classical autophagy, secretory autophagy, or the LC3-dependent extracellular vesicle loading and secretion pathway. ATG9A vesicles function as specialized carriers, with the N-terminus of ATG9A and both carbohydrate recognition domains of galectin-9 being critical for the process. TMED10 mediates the incorporation of galectin-9 into ATG9A vesicles, which then fuse with the plasma membrane via the STX13-SNAP23-VAMP3 SNARE complex. Furthermore, ATG9A regulates the secretion of other proteins, including galectin-4, galectin-8, and annexin A6, but not IL-1β, galectin-3, or FGF2. This mechanism is potentially conserved across other cell types, including monocytic cells, which underscores its broader significance in unconventional protein secretion.
    DOI:  https://doi.org/10.1038/s41467-025-59605-5