bims-lycede Biomed News
on Lysosome-dependent cell death
Issue of 2025–04–27
two papers selected by
Sofía Peralta, Universidad Nacional de Cuyo



  1. Curr Opin Cell Biol. 2025 Apr 21. pii: S0955-0674(25)00053-5. [Epub ahead of print]94 102515
      The endo-lysosomal system plays a crucial role in cellular homeostasis by continuously turning over organelles, proteins, and other cargo of intra- or extracellular origin. Moreover, it senses the nutrient status within the cell and can ignite cellular responses by activating or repressing signaling pathways. To enable these roles, lysosomes are fueled by the biosynthetic pathway and receive cargo for degradation by endocytosis and autophagy. Tight regulation and coordination of these distinct trafficking pathways to lysosomes are critical for cellular health. In this review, we explore how these pathways converge at the late stages of the endo-lysosomal system and highlight the role of the HOPS complex as a unifying gatekeeper for trafficking to the lysosome.
    DOI:  https://doi.org/10.1016/j.ceb.2025.102515
  2. Autophagy Rep. 2025 ;pii: 2473765. [Epub ahead of print]4(1):
      Macrophages act to defend against infection, but can fail to completely prevent bacterial replication and dissemination in an immunocompetent host. Recent studies have shown that activation of a host transcription factor, TFEB, a regulator of lysosomal biogenesis, could restrict intramacrophage replication of the human pathogen Mycobacterium tuberculosis and synergize with suboptimal levels of the antibiotic rifampin to reduce bacterial loads. Currently available small molecule TFEB activators lack selectivity and potency, but could be potentially useful in a variety of pathological conditions with suboptimal lysosomal activity. TFEB nuclear translocation and activation depend on its phosphorylation status which is controlled by multiple cellular pathways. We devised a whole cell, high throughput screening assay to identify small molecules that activate TFEB by establishing a stably transfected HEK293T reporter cell line for ATF4, a basic leucine zipper transcription factor induced by stress response and activated in parallel to TFEB. We optimized its use in vitro using compounds that target endoplasmic reticulum stress and intracellular calcium signaling. We report results from screening the commercially available LOPAC library and the Selleck Chemicals library modified to include only FDA-approved drugs and clinical research compounds. We identified twenty-one compounds across six clinical use categories that activate ATF4, and confirmed that two proteasome inhibitors promote TFEB activation. The results of this study provide an assay that could be used to screen for small molecules that activate ATF4 and TFEB and a potential list of compounds identified as activators of the ATF4 transcription factor in response to cellular stress.
    Keywords:  host-directed therapy; macrophage; mycobacteria; stress response; tuberculosis
    DOI:  https://doi.org/10.1080/27694127.2025.2473765