bims-lycede Biomed News
on Lysosome-dependent cell death
Issue of 2024‒05‒12
five papers selected by
Sofía Peralta, Universidad Nacional de Cuyo



  1. Mol Pharm. 2024 May 09.
      The susceptibility of lysosomal membranes in tumor cells to cationic amphiphilic drugs (CADs) enables CADs to induce lysosomal membrane permeabilization (LMP) and trigger lysosome-dependent cell death (LDCD), suggesting a potential antitumor therapeutic approach. However, the existence of intrinsic lysosomal damage response mechanisms limits the display of the pharmacological activity of CADs. In this study, we report that low concentrations of QS-21, a saponin with cationic amphiphilicity extracted from Quillaja Saponaria tree, can induce LMP but has nontoxicity to tumor cells. QS-21 and MAP30, a type I ribosome-inactivating protein, synergistically induce apoptosis in tumor cells at low concentrations of both. Mechanistically, QS-21-induced LMP helps MAP30 escape from endosomes or lysosomes and subsequently enter the endoplasmic reticulum, where MAP30 downregulates the expression of autophagy-associated LC3 proteins, thereby inhibiting lysophagy. The inhibition of lysophagy results in the impaired clearance of damaged lysosomes, leading to the leakage of massive lysosomal contents such as cathepsins into the cytoplasm, ultimately triggering LDCD. In summary, our study showed that coadministration of QS-21 and MAP30 amplified the lysosomal disruption and can be a new synergistic LDCD-based antitumor therapy.
    Keywords:  lysophagy; lysosomal membrane permeabilization; lysosome-dependent cell death; ribosome-inactivating protein; saponin
    DOI:  https://doi.org/10.1021/acs.molpharmaceut.4c00140
  2. Med Res Rev. 2024 May 06.
      Previously, lysosomes were primarily referred to as the digestive organelles and recycling centers within cells. Recent discoveries have expanded the lysosomal functional scope and revealed their critical roles in nutrient sensing, epigenetic regulation, plasma membrane repair, lipid transport, ion homeostasis, and cellular stress response. Lysosomal dysfunction is also found to be associated with aging and several diseases. Therefore, function of macroautophagy, a lysosome-dependent intracellular degradation system, has been identified as one of the updated twelve hallmarks of aging. In this review, we begin by introducing the concept of lysosomal quality control (LQC), which is a cellular machinery that maintains the number, morphology, and function of lysosomes through different processes such as lysosomal biogenesis, reformation, fission, fusion, turnover, lysophagy, exocytosis, and membrane permeabilization and repair. Next, we summarize the results from studies reporting the association between LQC dysregulation and aging/various disorders. Subsequently, we explore the emerging therapeutic strategies that target distinct aspects of LQC for treating diseases and combatting aging. Lastly, we underscore the existing knowledge gap and propose potential avenues for future research.
    Keywords:  aging; autoimmune diseases; cancer; degenerative diseases; lysosomal quality control
    DOI:  https://doi.org/10.1002/med.22047
  3. Front Cell Dev Biol. 2024 ;12 1386149
      The Golgi apparatus plays a crucial role in lysosome biogenesis and the delivery of lysosomal enzymes, essential for maintaining cellular homeostasis and ensuring cell survival. Deficiencies in Golgi structure and function can profoundly impact lysosomal homeostasis, leading to various lysosomal storage diseases and neurodegenerative disorders. In this review, we highlight the role of the Golgi Reassembly Stacking Proteins (GRASPs) in the formation and function of the Golgi apparatus, emphasizing the current understanding of the association between the Golgi apparatus, lysosomes, and lysosomal storage diseases. Additionally, we discuss how Golgi dysfunction leads to the secretion of lysosomal enzymes. This review aims to serve as a concise resource, offering insights into Golgi structure, function, disease-related defects, and their consequential effects on lysosomal biogenesis and function. By highlighting Golgi defects as an underappreciated contributor to lysosomal dysfunction across various diseases, we aim to enhance comprehension of these intricate cellular processes.
    Keywords:  GRASP55; GRASP65; Golgi; HexA; lysosomal storage diseases; lysosome; neurodegenerative diseases; secretion
    DOI:  https://doi.org/10.3389/fcell.2024.1386149
  4. FEBS J. 2024 May 05.
      In eukaryotes, the spatiotemporal control of endolysosomal organelles is central to the maintenance of homeostasis. By providing an interface between the cytoplasm and external environment, the endolysosomal system is placed at the forefront of the response to a wide range of stresses faced by cells. Endosomes are equipped with a dedicated set of membrane-associated proteins that ensure endosomal functions as well as crosstalk with the secretory or the autophagy pathways. Morphodynamical processes operate through local spatialization of subdomains, enabling specific remodeling and membrane contact capabilities. Consequently, the plasticity of endolysosomal organelles can be considered a robust and flexible tool exploited by cells to cope with homeostatic deviations. In this review, we provide insights into how the cellular responses to various stresses (osmotic, UV, nutrient deprivation, or pathogen infections) rely on the adaptation of the endolysosomal system morphodynamics.
    Keywords:  autophagy; endocytic pathway; endolysosomes; endosomes; lysosome‐related organelles; membrane dynamics and contact sites; organelles; pathogen infection; plasma membrane; stress response
    DOI:  https://doi.org/10.1111/febs.17154
  5. J Cancer Res Clin Oncol. 2024 May 08. 150(5): 242
      BACKGROUND: Drug resistance is an important constraint on clinical outcomes in advanced cancers. LAMP2A is a limiting protein in molecular chaperone-mediated autophagy. This study was aimed to explore LAMP2A function in cisplatin (cis-diamminedichloroplatinum, DDP) resistance colorectal cancer (CRC) to seek new ideas for CRC clinical treatment.METHODS: In this study, LAMP2A expression was analyzed by molecular experimental techniques,such as qRT-PCR and western blot. Then, LAMP2A in cells was interfered by cell transfection experiments. Subsequently, the function of LAMP2A on proliferation, migration, invasion, DDP sensitivity, and autophagy of CRC/DDP cells were further investigated by a series of experiments, such as CCK-8, transwell, and western blot.
    RESULTS: We revealed that LAMP2A was clearly augmented in DDP-resistant CRC and was related to poor patient prognosis. Functionally, LAMP2A insertion remarkably CRC/DDP proliferation, migration, invasion ability and DDP resistance by strengthen autophagy. In contrast, LAMP2A knockdown limited the proliferation, migration, and invasion while heightened cellular sensitivity to DDP by restraining autophagy in CRC/DDP cells. Furthermore, LAMP2A silencing was able to curb tumor formation and enhance sensitivity to DDP in vivo.
    CONCLUSION: In summary, LAMP2A boosted malignant progression and DDP resistance in CRC/DDP cells through mediating autophagy. Clarifying LAMP2A function in DDP resistance is promising to seek cancer therapies biomarkers targeting LAMP2A activity.
    Keywords:  Autophagy; Chemoresistance; Colorectal cancer; DDP; LAMP2A
    DOI:  https://doi.org/10.1007/s00432-024-05775-6