bims-lorfki Biomed News
on Long non-coding RNA functions in the kidney
Issue of 2022–02–20
two papers selected by
Nikita Dewani, Max Delbrück Centre for Molecular Medicine



  1. Technol Cancer Res Treat. 2022 Jan-Dec;21:21 15330338221077803
      Introduction: Renal cancer is one of the most common cancers in the world, but the effect of therapies on advanced renal cancer has not improved for decades. Ferroptosis is an emerging type of programmed cell death and has been proved to play a vital role in many kinds of cancers. However, the mechanisms of ferroptosis regulated by long noncoding RNA (lncRNA) in the context of renal cancer was still unknown. Methods: We used bioinformation analysis to identify SLC16A1-AS1 as a survival-related lncRNA in renal cancer. The expression levels of SLC16A1-AS1 and microRNA-143-3p (miR-143-3p) were detected by quantitative reverse transcription-polymerase chain reaction. Cell counting kit-8 assay, 5-bromo-2'-deoxyuridine proliferation assay, and colony-formation assay were performed to evaluate cell viability and proliferation. Wound-healing assay and transwell assay were used to examine cell invasive and migration capacity. Dual-luciferase reporter assay and RNA-binding protein immunoprecipitation were used to identify the interaction among SLC16A1-AS1, miR-143-3p, and the target protein solute carrier family 7 membrane 11 (SLC7A11). Reduced glutathione and glutathione and lipid peroxidation measurements were carried out to evaluate the level of ferroptosis, and the expression levels of ferroptosis-related proteins were analyzed by western blot. Results: Our study revealed that SLC16A1-AS1 has high expression and was associated with overall survival in renal cancer. Knockdown SLC16A1-AS1 inhibited cell viability, proliferation, and migration of renal cancer cells. Furthermore, it was demonstrated that SLC16A1-AS1 served as a sponge of miR-143-3p, and knockdown SLC16A1-AS1 significantly increased the enrichment of miR-143-3p. And then, SLC7A11 was identified as the target protein of miR-143-3p, and overexpression miR-143-3p remarkably inhibited the expression of SLC7A11. Moreover, knockdown SLC16A1-AS1 could aggravate this effect. Finally, through inhibiting SLC7A11 expression, silencing SLC16A1-AS1 induced ferroptosis via increasing miR-143-3p. Conclusion: The present results suggest that silencing lncRNA SLC16A1-AS1 can induce ferroptosis through miR-143-3p/SLC7A11 signaling in renal cancer. Our study provided a novel view into the pathogenesis and treatment strategy of RCC.
    Keywords:  SLC16A1-AS1; SLC7A11; ferroptosis; miR-143-3p; renal cell carcinoma
    DOI:  https://doi.org/10.1177/15330338221077803
  2. J Oncol. 2022 ;2022 6100187
      Kidney renal clear cell carcinoma (KIRC) has a poor prognosis and a high death rate globally. Cancer prognosis is strongly linked to immune-related genes (IRGs), according to numerous research. We utilized KIRC RNA-seq data from the TCGA database to build a prognostic model incorporating seven immune-related (IR) lncRNAs, and we constructed the model using LASSO regression. Additionally, we calculated a risk score for each patient using a prognostic model that divided patients into high-risk and low-risk groups. The ESTIMATE and CIBERSORT methodologies were then used to analyze the differences in the tumor microenvironment of the two groups of patients. Finally, we predicted three small molecule drugs that may have potential therapeutic effects for high-risk patients. We combined the acute kidney injury dataset to obtain differential genes that may serve standard biological functions with two risk groups. Our study shows that the model we constructed for IR-lncRNAs has reliable predictive efficacy for patients with KIRC.
    DOI:  https://doi.org/10.1155/2022/6100187