bims-lorfki Biomed News
on Long non-coding RNA functions in the kidney
Issue of 2021–11–14
two papers selected by
Nikita Dewani, Max Delbrück Centre for Molecular Medicine



  1. Cent Eur J Immunol. 2021 ;46(3): 295-304
       Introduction: Resveratrol plays a protective role against sepsis development, and the long noncoding RNA (lncRNA) MALAT1 is an inflammation-relevant biomarker. This investigation attempted to reveal whether resveratrol attenuated inflammation of sepsis-induced acute kidney injury (AKI) by regulating MALAT1.
    Material and methods: In total 120 rats were divided into a control group (n = 20), a Sham group (n = 20), a sepsis group (n = 40) and a resveratrol group (n = 40), and serum levels of inflammatory cytokines and AKI biomarkers were determined. An equal number of rats under identical treatments were, additionally, tracked for their survival, and the serum level of lncRNA MALAT1 was measured by RT-PCR. Moreover, septic cell models were constructed by treating HK-2 cells with lipopolysaccharide (LPS), and tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 levels released by the cells were determined with ELISA.
    Results: Resveratrol treatment significantly brought down serum levels of inflammatory cytokines (i.e. TNF-α, IL-1β and IL-6), kidney function indicators (i.e. Scr, blood urea nitrogen [BUN] and Scys C), AKI biomarkers (i.e. NGAL and KIM-1) and MALAT1 in cecal ligation and puncture (CLP)-induced septic model rats (all p < 0.05), and the life span of septic rats was elongated by resveratrol treatment (p < 0.05). Viability and cytokine release of LPS-treated HK2 cells were rescued by resveratrol (p < 0.05), which was accompanied by a marked fall of MALAT1 expression (p < 0.05). In addition, si-MALAT1 diminished viability and suppressed cytokine release of HK2 cells, while pcDNA3.1-MALAT1 hindered the impact of resveratrol on the inflammatory response of HK2 cells (p < 0.05). Ultimately, miR-205, a protective molecule in sepsis-relevant AKI, was down-regulated by resveratrol and si-MALAT1 (p < 0.05).
    Conclusions: Resveratrol relieved sepsis-induced AKI by restraining the lncRNA MALAT1/miR-205 axis.
    Keywords:  acute kidney injury; cell viability; inflammation; lncRNA MALAT1; miRNA-205; resveratrol; sepsis
    DOI:  https://doi.org/10.5114/ceji.2021.109195
  2. J Oncol. 2021 ;2021 9997185
      The most common kind of kidney cancer with poor prognosis is clear cell renal cell carcinoma (ccRCC). Pyroptosis is shown to be an inflammatory type of programmed cell death in recent years. In this research, we utilized pyroptosis-related differentially expressed lncRNAs in ccRCC to develop a predictive multi-lncRNA signature. We uncovered 14 lncRNAs with different expression patterns that were linked to ccRCC prognosis. Kaplan-Meier analysis identified a signature of high-risk lncRNAs related to poor prognosis for ccRCC. Furthermore, the AUC of the lncRNA signature was 0.771, indicating that they can be used to predict ccRCC prognosis. In predicting ccRCC prognosis, our risk analysis approach outperformed standard clinicopathological characteristics. In the low-risk group, GSEA indicated tumor-related pathways. T-cell functions such as T-cell coinhibition and T-cell costimulation were found to be expressed differently in two groups. Immune checkpoints including PD-1, LAG3, CTLA4, and BTLA were also differently expressed between the two groups. In patients with ccRCC, we created a 14-lncRNA-based predictor as a robust prognostic and predictive tool for OS.
    DOI:  https://doi.org/10.1155/2021/9997185