bims-lorfki Biomed News
on Long non-coding RNA functions in the kidney
Issue of 2021‒09‒26
two papers selected by
Nikita Dewani
Max Delbrück Centre for Molecular Medicine


  1. J Cell Mol Med. 2021 Sep 21.
      Renal ischaemia/reperfusion (I/R) injury may induce kidney damage and dysfunction, in which oxidative stress and apoptosis play important roles. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are reported to be closely related to renal I/R, but the specific molecular mechanism is still unclear. The purpose of this research was to explore the regulatory effect of lncRNA TUG1 on oxidative stress and apoptosis in renal I/R injury. This research revealed that in renal I/R injury and hypoxia/reperfusion (H/R) injury in vitro, the expression level of lncRNA TUG1 was upregulated, and oxidative stress levels and apoptosis levels were negatively correlated with the expression level of lncRNA TUG1. Using bioinformatics databases such as TargetScan and microRNA.org, microRNA-144-3p (miR-144-3p) was predicted to be involved in the association between lncRNA TUG1 and Nrf2. This study confirmed that the level of miR-144-3p was significantly reduced following renal I/R injury and H/R injury in vitro, and miR-144-3p was determined to target Nrf2 and inhibit its expression. In addition, lncRNA TUG1 can reduce the inhibitory effect of miR-144-3p on Nrf2 by sponging miR-144-3p. In summary, our research shows that lncRNA TUG1 regulates oxidative stress and apoptosis during renal I/R injury through the miR-144-3p/Nrf2 axis, which may be a new treatment target for renal I/R injury.
    Keywords:  LncRNA TUG1; Nrf2; apoptosis; miR-144-3p; renal ischaemia/reperfusion injury
    DOI:  https://doi.org/10.1111/jcmm.16924
  2. Open Med (Wars). 2021 ;16(1): 1336-1349
      Background: Diabetic nephropathy (DN) is a common diabetic complication. Long noncoding RNAs (lncRNAs) have been identified as essential regulators in DN progression. This study is devoted to the research of lncRNA-myocardial infarction-associated transcript (MIAT) in DN.Methods: DN cell model was established by high glucose (HG) treatment for human renal tubular epithelial cells (HK-2). Cell viability and colonizing capacity were analyzed by Cell Counting Kit-8 (CCK-8) and colony formation assay. Apoptosis was assessed via caspase-3 detection and flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was used for evaluating inflammation. The protein determination was completed using western blot. MIAT, microRNA-182-5p (miR-182-5p), and G protein-coupled receptor class C group 5 member A (GPRC5A) levels were all examined via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Intergenic binding was verified using dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays.
    Results: HG induced the inhibition of cell growth, but accelerated apoptosis and inflammation as well as the activation of nuclear factor kappa B (NF-κB) pathway. MIAT reestablishment prevented the HG-induced cell damages and NF-κB signal activation. Mechanistically, MIAT was proved as a miR-182-5p sponge and regulated the expression of GPRC5A that was a miR-182-5p target. The rescued experiments demonstrated that MIAT downregulation or miR-182-5p upregulation aggravated the HG-induced cell damages and activated the NF-κB pathway via the respective regulation of miR-182-5p or GPRC5A.
    Conclusion: Taken together, MIAT functioned as an inhibitory factor in the pathogenesis to impede the development of DN and inactivate the NF-κB pathway via regulating the miR-182-5p/GPRC5A axis.
    Keywords:  DN; GPRC5A; MIAT; NF-κB pathway; miR-182-5p
    DOI:  https://doi.org/10.1515/med-2021-0328