Biochemistry. 2026 Jan 05.
Microbial diversity encompasses vast genetic and functional capacities, with immense potential for biotechnological applications. Yet, most biotechnological advances have been confined to a narrow set of model organisms, leaving the broader repertoire of nonmodel microbes largely untapped due to species-specific barriers that hinder genetic manipulation. Over the past decade, the advent of CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) systems has transformed microbial engineering by enabling precise, programmable, and scalable control of genomes and gene expression. Importantly, the relative independence of many CRISPR effectors from host cofactors has facilitated their use in microbes previously challenging to engineer, thus expanding opportunities to exploit their unique metabolic and biosynthetic traits. In this review, we summarize the major CRISPR-Cas toolkits and highlight recent innovations, with particular emphasis on translational applications in nonmodel organisms such as C1-gas-fixing acetogens, antibiotic-producing Streptomyces, and gut commensal Bacteroides. We emphasize three areas of emerging impact: engineering microbial cell factories for sustainable biomanufacturing, accelerating natural product discovery, and development of next-generation live biotherapeutics. Finally, we discuss current limitations and future opportunities, underscoring how the integration of genome editing, synthetic biology, and systems-level approaches is reshaping the landscape of microbial biotechnology.
Keywords: Bacteroides; CRISPR (clustered regularly interspaced short palindromic repeats); Streptomyces; microbial diversity