bims-livmat Biomed News
on Living materials
Issue of 2025–03–16
four papers selected by
Sara Trujillo Muñoz, Leibniz-Institut für Neue Materialien



  1. Nat Rev Drug Discov. 2025 Mar 11.
      
    Keywords:  Brain; Obesity; Synthetic biology; Therapeutics
    DOI:  https://doi.org/10.1038/d41573-025-00048-4
  2. Cold Spring Harb Protoc. 2025 Mar 12.
      Synthetic biology approaches merge the tenets of engineering with established biological techniques to answer fundamental questions about living systems and to engineer biological forms and functions. Following the engineering principle of design-build-test-iterate, this review serves as a guide to applying synthetic principles and approaches in maize. We outline strategies for (1) choosing the optimal model organism to serve as a heterologous chassis for maize signaling pathways, (2) designing and building biological parts and devices to express pathway components, (3) choosing an analytical technique to measure pathway function, and (4) optimizing and troubleshooting the designed system. Auxin is a hormone that is essential for plant growth and development, regulating cellular proliferation and differentiation. Considering the importance of auxin for maize development in aerial and underground tissue, it was an obvious starting point for synthetic biology approaches. We use the maize nuclear auxin response recapitulated in yeast (AuxInYeast) system to showcase the power of heterologous expression approaches for testing fundamental attributes of the evolution, genetics, and biochemistry of signaling pathways that may be challenging to assay in planta. This approach involves co-expression of maize auxin signaling components in Saccharomyces cerevisiae coupled with fluorescence flow cytometry to quantify signaling activity. We and others have used this system to interrogate the dynamics of pathway signaling, interactions between paralogous components, and the adaptation of auxin signaling over large evolutionary distances. Thus, the AuxInYeast system is a fast, high-throughput, hypothesis-generating platform that can be readily adapted by the maize community to creatively answer questions about fundamental maize biology and to drive development of novel tools for breeding and plant engineering.
    DOI:  https://doi.org/10.1101/pdb.top108450
  3. Biosaf Health. 2024 Dec;6(6): 376-382
      With the rapid advance in synthetic biology and the expanding field of synthetic genomics, the realization of a redesigned yeast genome has become an achievable milestone. Multiple eukaryotic chromosomes, meticulously designed and synthesized, are now being systematically integrated to create an entirely synthetic eukaryotic cell. This comprehensive review examines the fundamental design principles and construction strategies, highlighting critical technological breakthroughs in pursuing the first synthetic eukaryotic cell. Additionally, it underscores the critical contributions of the Sc2.0 project, which has provided essential tools and engineered cellular platforms that have significantly accelerated research and industrial progress. The ethical and legal implications arising from synthetic eukaryotic life are also explored, offering insights into future research directions for synthetic eukaryotic genomes. The remarkable advances in deoxyribonucleic acid synthesis hold immense potential, promising to unlock new opportunities across medicine, industry, agriculture, and research.
    Keywords:  Eukaryotes; Synthetic biology; Synthetic genomics
    DOI:  https://doi.org/10.1016/j.bsheal.2024.11.001
  4. J Microbiol Biotechnol. 2025 Mar 11. 35 e2410054
      Metabolic diseases, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, have emerged as major global health challenges. Recent research has revealed that the gut microbiome is closely associated with the development of these conditions. The Food and Drug Administration has recognized certain probiotic strains with therapeutic potential, classifying them as live biotherapeutic products (LBPs). LBPs, which are derived from naturally occurring microorganisms, may present an effective strategy for treating metabolic diseases by restoring gut microbiota balance and regulating metabolic functions. This review explores the development of LBPs specifically for metabolic disease treatments, covering every phase from strain identification, non-clinical and clinical trials, manufacturing and formulation to regulatory approval. Furthermore, it addresses the challenges involved in the commercialization of these therapies. By offering critical insights into the research and development of LBPs for metabolic disease treatment, this review aims to contribute to the progress of these promising therapies.
    Keywords:  Metabolic diseases; gut microbiome; live biotherapeutic products
    DOI:  https://doi.org/10.4014/jmb.2410.10054