bims-lifras Biomed News
on Li-Fraumeni syndrome
Issue of 2023–12–24
four papers selected by
Joanna Zawacka, Karolinska Institutet



  1. JCO Precis Oncol. 2023 Sep;7 e2300168
       PURPOSE: A subset of renal cell carcinoma (RCC) cases occur because of a hereditary predisposition. However, the prevalence and profiling of germline alterations in RCC have not been fully characterized. Additionally, clinicopathologic factors associated with pathogenic or likely pathogenic (P/LP) germline variants in patients with RCC remain poorly understood.
    METHODS: A retrospective analysis of patients with RCC who underwent genetic evaluation was performed. The frequency of P/LP germline variants and genes was evaluated in this cohort. The association between genetic testing outcomes and clinicopathologic features was also assessed.
    RESULTS: A total of 321 patients with RCC who had germline testing were identified. Within this cohort, 42 patients (13.1%) had P/LP variants. Genes with the most frequent germline mutations were FLCN (n = 10, 3.1%), SDHB (n = 4, 1.2%), VHL (n = 4, 1.2%), MLH1 (n = 3, 0.9%), and CHEK2 (n = 4, 1.2%). Among patients with P/LP variants, 19 (45.2%) had a potentially targetable mutation. The presence of bilateral or multifocal tumors was associated with P/LP variants (P = .0012 and P = .0098, respectively). Patients who had targeted gene testing had higher rates of P/LP variants compared with multigene panel testing (P = .015). Age and family history of cancers (RCC and non-RCC) did not have any statistically significant association with germline testing outcomes.
    CONCLUSION: Among patients with RCC, unselected for a known familial predisposition, 13.4% had P/LP variants. Almost half of patients with P/LP variants had a potentially targetable mutation. Targeted gene panel testing is a feasible option for patients, particularly if syndromic features are present. Age and family history were not associated with P/LP variants. Future studies are needed to optimize current genetic evaluation criteria to expand the detection of patients with RCC who may have germline mutations.
    DOI:  https://doi.org/10.1200/PO.23.00168
  2. Biomedicines. 2023 Dec 05. pii: 3222. [Epub ahead of print]11(12):
      Next-generation sequencing (NGS) tools have importantly helped the classification of myelodysplastic syndromes (MDS), guiding the management of patients. However, new concerns are under debate regarding their implementation in routine clinical practice for the identification of germline predisposition. Cost-effective targeted NGS tools would improve the current standardized studies and genetic counseling. Here, we present our experience in a preliminary study detecting variants using a two-time multiplexed library strategy. Samples from different MDS patients were first mixed before library preparation and later multiplexed for a sequencing run. Two different mixes including a pool of three (3×) and four (4×) samples were evaluated. The filtered variants found in the individually sequenced samples were compared with the variants found in the two-time multiplexed studies to determine the detection efficiency scores. The same candidate variants were found in the two-time multiplexed studies in comparison with the individual tNGS. The variant allele frequency (VAF) values of the candidate variants were also compared. No significant differences were found between the expected and observed VAF percentages in both the 3× (p-value 0.74) and 4× (p-value 0.34) multiplexed studies. Our preliminary results suggest that the two-time multiplexing strategy might have the potential to help reduce the cost of evaluating germline predisposition.
    Keywords:  genetic predisposition; genomic screening; germline variants; multiplexed samples; myelodysplastic syndromes (MDS); targeted next-generation sequencing (tNGS)
    DOI:  https://doi.org/10.3390/biomedicines11123222
  3. J Clin Med. 2023 Dec 13. pii: 7651. [Epub ahead of print]12(24):
      Myelodysplastic neoplasm (MDS) is a heterogeneous group of myeloid neoplasms affected by germline and somatic genetic alterations. The incidence of MDS increases with age but rarely occurs at a young age. We investigated the germline and somatic genetic alterations of Korean patients with young-onset MDS (<40 years). Among the thirty-one patients, five (16.1%) had causative germline variants predisposing them to myeloid neoplasms (three with GATA2 variants and one each with PGM3 and ETV variants). We found that PGM3 deficiency, a subtype of severe immunodeficiency, predisposes patients to MDS. Somatic mutations were identified in 14 patients (45.2%), with lower rates in patients aged < 20 years (11.1%). Nine (29%) patients had U2AF1 S34F/Y mutations, and patients with U2AF1 mutations showed significantly worse progression-free survival (p < 0.001) and overall survival (p = 0.006) than those without U2AF1 mutations. A UBA1 M41T mutation that causes VEXAS syndrome was identified in a male patient. In conclusion, a germline predisposition to myeloid neoplasms occurred in ~16% of young-onset MDS patients and was largely associated with primary immunodeficiencies, including GATA2 deficiency. Furthermore, the high frequency of somatic U2AF1 mutations in patients with young-onset MDS suggests the presence of a distinct MDS subtype.
    Keywords:  U2AF1 mutation; germline predisposition; myelodysplastic neoplasm; somatic mutation; young onset
    DOI:  https://doi.org/10.3390/jcm12247651
  4. Cancers (Basel). 2023 Dec 06. pii: 5730. [Epub ahead of print]15(24):
       BACKGROUND: Several hereditary-familial syndromes associated with various types of tumors have been identified to date, evidencing that hereditary cancers caused by germline mutations account for 5-10% of all tumors. Advances in genetic technology and the implementation of Next-Generation Sequencing (NGS) have accelerated the discovery of several susceptibility cancer genes, allowing for the detection of cancer-predisposing mutations in a larger number of cases. The aim of this study is to highlight how the application of an NGS-multigene panel to a group of oncological patients subsequently leads to improvement in the identification of carriers of healthy pathogenic variants/likely pathogenic variants (PVs/LPVs) and prevention of the disease in these cases.
    METHODS: Starting from a total of 110 cancer patients carrying PVs/LPVs in genes involved in cancer susceptibility detected via a customized NGS panel of 27 cancer-associated genes, we enrolled 250 healthy collateral family members from January 2020 to July 2022. The specific PVs/LPVs identified in each proband were tested in healthy collateral family members via Sanger sequencing.
    RESULTS: A total of 131 out of the 250 cases (52%) were not carriers of the mutation detected in the affected relative, while 119 were carriers. Of these, 81/250 patients carried PVs/LPVs on BRCA1/2 (33%), 35/250 harbored PVs/LPVs on other genes beyond BRCA1 and BRCA2 (14%), and 3/250 (1%) were PVs/LPVs carriers both on BRCA1/2 and on another susceptibility gene.
    CONCLUSION: Our results show that the analysis of BRCA1/2 genes would have only resulted in a missed diagnosis in a number of cases and in the lack of prevention of the disease in a considerable percentage of healthy carriers with a genetic mutation (14%).
    Keywords:  NGS multigene panel; healthy collateral family members; hereditary cancer
    DOI:  https://doi.org/10.3390/cancers15245730