Ann Transl Med. 2020 Nov;8(21): 1417
Background: Hereditary factors contributed to breast cancer susceptibility. Low BRCA mutation prevalence was demonstrated in previous BRCA mutation screening in Chinese breast cancer patients. Multiple-gene sequencing may assist in discovering detrimental germline mutation in.
BRCA: negative breast cancers.
Methods: A total of 384 Chinese subjects with any two of high-risk factors were recruited and screened by next-generation sequencing (NGS) for 30 cancer susceptible genes. Variants with a truncating, initiation codon or splice donor/acceptor effect, or with pathogenicity demonstrated in published literature were classified into pathogenic/likely-pathogenic mutations.
Results: In total, we acquired 39 (10.2%) patients with pathogenic/likely-pathogenic germline mutations, including one carrying two distinct mutations. Major mutant non-BRCA genes were MUTYH (n=11, 2.9%), PTCH1 (n=7, 1.8%), RET (n=6, 1.6%) and PALB2 (n=5, 1.3%). Other mutant genes included TP53 (n=3, 0.8%), RAD51D (n=2, 0.5%), CHEK2 (n=1, 0.3%), BRIP1 (n=1, 0.3%), CDH1 (n=1, 0.3%), MRE11 (n=1, 0.3%), RAD50 (n=1, 0.3%) and PALLD (n=1, 0.3%). A splicing germline mutation, MUTYH c.934-2A>G, was a hotspot (9/384, 2.3%) in Chinese breast cancer.
Conclusions: Among BRCA-negative breast cancer patients with high hereditary risk in China, 10.2% carried mutations in cancer associated susceptibility genes. MUTYH and PTCH1 had relatively high mutation rates (2.9% and 1.8%). Multigene testing contributes to understand genetic background of BRCA-negative breast cancer patients with high hereditary risk.
Keywords: BRCA-negative; Germline mutation; hereditary breast cancer; multigene sequencing