J Med Internet Res. 2025 Oct 08. 27 e73185
BACKGROUND: New media have become vital sources of cancer-related health information. However, concerns about the quality of that information persist.
OBJECTIVE: This study aims to identify characteristics of studies considering cancer-related information on new media (including social media and artificial intelligence chatbots); analyze patterns in information quality across different platforms, cancer types, and evaluation tools; and synthesize the quality levels of the information.
METHODS: We systematically searched PubMed, Web of Science, Scopus, and Medline databases for peer-reviewed studies published in English between 2014 and 2023. The validity of the included studies was assessed based on risk of bias, reporting quality, and ethical approval, using the Joanna Briggs Institute Critical Appraisal and the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) checklists. Features of platforms, cancer types, evaluation tools, and trends were summarized. Ordinal logistic regression was used to estimate the associations between the conclusion of quality assessments and study features. A random-effects meta-analysis of proportions was conducted to synthesize the overall levels of information quality and corresponding 95% CIs for each assessment indicator.
RESULTS: A total of 75 studies were included, encompassing 297,519 posts related to 17 cancer types across 15 media platforms. Studies focusing on video-based media (odds ratio [OR] 0.02, 95% CI 0.01-0.12), rare cancers (OR 0.32, 95% CI 0.16-0.65), and combined cancer types (OR 0.04, 95% CI 0.01-0.14) were statistically less likely to yield higher quality conclusions compared to those on text-based media and common cancers. The pooled estimates reported moderate overall quality (DISCERN 43.58, 95% CI 37.80-49.35; Global Quality Score 49.91, 95% CI 43.31-56.50), moderate technical quality (Journal of American Medical Association Benchmark Criteria 46.13, 95% CI 38.87-53.39; Health on the Net Foundation Code of Conduct 49.68, 95% CI 19.68-79.68), moderate-high understandability (Patient Education Material Assessment Tool for Understandability 66.92, 95% CI 59.86-73.99), moderate-low actionability (Patient Education Materials Assessment Tool for Actionability 37.24, 95% CI 18.08-58.68; usefulness 48.86, 95% CI 26.24-71.48), and moderate-low completeness (34.22, 95% CI 27.96-40.48). Furthermore, 27.15% (95% CI 21.36-33.35) of posts contained misinformation, 21.15% (95% CI 8.96-36.50) contained harmful information, and 12.46% (95% CI 7.52-17.39) contained commercial bias. Publication bias was detected only in misinformation studies (Egger test: bias -5.67, 95% CI -9.63 to -1.71; P=.006), with high heterogeneity across most outcomes (I²>75%).
CONCLUSIONS: Meta-analysis results revealed that the overall quality of cancer-related information on social media and artificial intelligence chatbots was moderate, with relatively higher scores for understandability but lower scores for actionability and completeness. A notable proportion of content contained misleading, harmful, or commercially biased information, posing potential risks to users. To support informed decision-making in cancer care, it is essential to improve the quality of information delivered through these media platforms.
TRIAL REGISTRATION: PROSPERO CRD420251058032; https://www.crd.york.ac.uk/PROSPERO/view/CRD420251058032.
Keywords: cancer; consumer health information; health literacy; misinformation; social communication; social media; systematic review