bims-lances Biomed News
on Landscapes from Cryo-EM and Simulations
Issue of 2024–07–21
two papers selected by
James M. Krieger, National Centre for Biotechnology



  1. PLoS Comput Biol. 2024 Jul 15. 20(7): e1012180
      Converting cryo-electron microscopy (cryo-EM) data into high-quality structural models is a challenging problem of outstanding importance. Current refinement methods often generate unbalanced models in which physico-chemical quality is sacrificed for excellent fit to the data. Furthermore, these techniques struggle to represent the conformational heterogeneity averaged out in low-resolution regions of density maps. Here we introduce EMMIVox, a Bayesian inference approach to determine single-structure models as well as structural ensembles from cryo-EM maps. EMMIVox automatically balances experimental information with accurate physico-chemical models of the system and the surrounding environment, including waters, lipids, and ions. Explicit treatment of data correlation and noise as well as inference of accurate B-factors enable determination of structural models and ensembles with both excellent fit to the data and high stereochemical quality, thus outperforming state-of-the-art refinement techniques. EMMIVox represents a flexible approach to determine high-quality structural models that will contribute to advancing our understanding of the molecular mechanisms underlying biological functions.
    DOI:  https://doi.org/10.1371/journal.pcbi.1012180
  2. Nat Methods. 2024 Jul 18.
      Advances in cryo-electron tomography (cryo-ET) have produced new opportunities to visualize the structures of dynamic macromolecules in native cellular environments. While cryo-ET can reveal structures at molecular resolution, image processing algorithms remain a bottleneck in resolving the heterogeneity of biomolecular structures in situ. Here, we introduce cryoDRGN-ET for heterogeneous reconstruction of cryo-ET subtomograms. CryoDRGN-ET learns a deep generative model of three-dimensional density maps directly from subtomogram tilt-series images and can capture states diverse in both composition and conformation. We validate this approach by recovering the known translational states in Mycoplasma pneumoniae ribosomes in situ. We then perform cryo-ET on cryogenic focused ion beam-milled Saccharomyces cerevisiae cells. CryoDRGN-ET reveals the structural landscape of S. cerevisiae ribosomes during translation and captures continuous motions of fatty acid synthase complexes inside cells. This method is openly available in the cryoDRGN software.
    DOI:  https://doi.org/10.1038/s41592-024-02340-4