J Food Biochem. 2022 Mar 30. e14157
Lecithins are a phospholipid-rich mixture recovered from the degumming process of crude vegetable oils. Since the nineteenth century, this by-product of oil processing has been used as a food and pharmaceutical ingredient. Lecithins' popularity as an ingredient in the pharmaceutical and food industries arises from their particular properties, such as their hydrophilic-lipophilic balance, critical micellar concentration, and assembly properties. However, there is limited knowledge of the use of lecithins to formulate pharmaceutical- and food-grade microemulsions. Unlike conventional emulsions, microemulsions are thermodynamically stable systems that offer long-term stability. Besides, microemulsions show nano-sized droplets, transparency, ease of preparation and scale-up, and do not require expensive equipment. This review aims to provide a comprehensive overview of lecithins, their properties, and their use in formulating microemulsions, a promising method to incorporate, protect, and deliver bioactive compounds in pharmaceutical and food products. PRACTICAL APPLICATIONS: Lecithins are a phospholipid-rich mixture recovered from the degumming process of crude vegetable oils. Since the nineteenth century, this by-product of oil processing has been used as a food ingredient. Lecithin phospholipids are commonly used as emulsifier agents in the food and pharmaceutical industries because of their particular properties. However, there is limited knowledge of the use of lecithins to formulate pharmaceutical- or food-grade microemulsions. Unlike conventional emulsions, microemulsions are stable systems that offer long-term stability, nano-sized droplets, transparency, ease of preparation and scale-up, and do not require expensive equipment. This review aims to provide a comprehensive overview of lecithins, their properties, and their use in formulating microemulsions, a promising method to incorporate, protect, and deliver bioactive compounds such as vitamins, flavors, antioxidants, nutrients, colors, antimicrobials, and polyphenols.
Keywords: food-grade microemulsions; lecithins; phospholipids