bims-kracam Biomed News
on K-Ras in cancer metabolism
Issue of 2022‒01‒30
ninety-two papers selected by
Yasmin Elkabani
Egyptian Foundation for Research and Community Development


  1. Dalton Trans. 2022 Jan 27.
      Hypoxia and the overexpression of hydrogen peroxide (H2O2) in the tumor microenvironment (TME) are conducive to cancer cell proliferation, which greatly hinders cancer treatment. Here, we design a novel TME-responsive therapeutic nanoplatform Co/ZIF-8/ICG/Pt (CZIP) to achieve chemodynamic therapy (CDT) and enhanced photodynamic therapy (PDT). In this nanoplatform, under near-infrared light (NIR) irradiation, the photosensitizer indocyanine green (ICG) can generate singlet oxygen (1O2) for cancer cell apoptosis. Meanwhile, overexpressed H2O2 in the TME could be catalyzed to generate O2 by the loaded Pt to relieve tumor hypoxia and promote the PDT-induced 1O2 production. In addition, the doped Co2+ could react with H2O2 to produce hydroxyl radicals (˙OH) for CDT. The multifunctional nanoplatform CZIP showed high biosafety and a good antitumor effect, which would provide a new route for cancer therapy.
    DOI:  https://doi.org/10.1039/d1dt04120g
  2. Angew Chem Int Ed Engl. 2022 Jan 23.
      Metastatic cancer is difficult to cure because of its uncontrollable nature and side effects during treatment. We constructed a reactive oxygen species (ROS)-activated smart theranostic prodrug system based on an ROS active site linked with both a targeting group and an anticancer drug for efficient regional chemotherapy of metastatic cancers. The optimized prodrug ( Bio-(8)-MB-CPT ) with biotin as the targeting group displayed high sensitivity towards ROS and selectively targeting ability towards cervical cancer cells, showing highly efficient drug release (up to 92%) in vitro. Bio-(8)-MB-CPT thus exerted strong toxicity towards cervical cancer cells, but unlike the parent drug (camptothecin), showed no toxicity towards normal cells. Moreover, the prodrug displayed significantly enhanced antitumor efficacy in vivo and eradicated the tumor with no obvious side effects (inhibition of the tumor reached up to 99.9%).
    Keywords:  Reactive Oxygen Species; metastatic cancer; prodrug; regional chemotherapy; theranostic agent
    DOI:  https://doi.org/10.1002/anie.202116807
  3. Int J Pharm. 2022 Jan 20. pii: S0378-5173(22)00052-7. [Epub ahead of print]615 121499
      Resveratrol (RSV) is a natural product with multiple biological benefits including anticancer properties. Unfortunately, its biological benefits are limited by its low bioavailability and rapid hepatic metabolism and degradation in the body. The aim of this study was to develop an effective delivery system for RSV that would enhance the plasmatic stability and decrease the metabolism rate of RSV through a dual strategy of chemical modification and nanoparticle formulation. The effectiveness of this strategy was tested for the application of RSV anticancer treatment in a mouse cancer model. Chemical modification of RSV was achieved by conjugating RSV to a low molecular weight co-polymer mPEG-PLA. This conjugated RSV together with free RSV were formulated into mPEG-PLA nanoparticles (conjugated RSV NPs). These NPs showed a stable plasma stability profile and decreased liver metabolism rate compared to nanoparticles encapsulating free RSV in mPEG-PLA (encapsulated RSV NPs) and free RSV alone. However, in vitro cell studies using B16-F10 cancer cells showed that conjugated RSV NPs were less effective compared to encapsulated RSV NPs, possibly due to the lack of biotransformation of conjugated RSV to the active form RSV in the simple cell studies. To study the actual effect of our strategy, an in vivo C57BL/6J mouse model with subcutaneous B16-F10 melanoma using intraperitoneal administration was used to reveal the relationship between the improved plasma stability and reduced liver metabolism rate of RSV in conjugated RSV NPs, and suppression of the tumour growth in mice. In vivo, a better tumour suppression trend with conjugated RSV NPs was noted. Our study suggests that the use of chemical conjugation with NP formulation is an effective strategy to reduce the degradation and metabolism rate of RSV and consequently increase the antitumour activity of RSV in vivo. This strategy has potential to be further developed for the suppression of early growth of tumours with no side effects.
    Keywords:  Antitumour activity; Conjugation; Degradation; Liver metabolism; Low molecular weight polymeric nanoparticles; Resveratrol
    DOI:  https://doi.org/10.1016/j.ijpharm.2022.121499
  4. Colloids Surf B Biointerfaces. 2022 Jan 22. pii: S0927-7765(22)00036-4. [Epub ahead of print]212 112353
      Enzyme-powered nanomotors with active motion have opened a new door in design of biocompatible drug delivery systems for cancer treatment. However, the movement of them still faces huge challenges due to the viscous physiological environment. To address this issue, we developed a photothermal interference (PTI) urease-modified polydopamine (PDA) nanomotor (PDA@HSA@Ur) for deeper-penetration of doxorubicin (DOX) through improved motion. The urease-powered nanomotors can generate self-propulsion via catalyzing decomposition of biocompatible urea into carbon dioxide and ammonia through a self-diffusiophoretic. Meanwhile, when exposed to near-infrared (NIR) laser, the increased temperature of tumors microenvironment from nanomotors can not only induce tumor cell apoptosis but also enhance the biocatalytic activity of urease to improve the motion of nanomotors. Compared to the nanomotors propelled only by urea, PTI nanomotors realize highly effective self-propulsion with improved cellular uptake in vitro. Furthermore, PTI nanomotors display an enhanced anticancer efficiency owing to synergistic photothermal and chemotherapy effect. The PTI reported in this manuscript is the first to provide a thermally assisted method for highly efficient cancer treatment with urease-powered nanomotors in a complex physiological environment through enhanced motion and synergistic therapy.
    Keywords:  Enhanced diffusion; Nanomotors; Photothermal interference; Photothermal therapy; Self-propulsion
    DOI:  https://doi.org/10.1016/j.colsurfb.2022.112353
  5. 3 Biotech. 2022 Feb;12(2): 41
      Traditional therapies need high systematic dosages that not only destroys cancerous cells but also healthy cells. To overcome this problem recent advancement in nanotechnology specifically in nanomaterials has been extensively done for various biological applications, such as targeted drug delivery. Nanotechnology, as a frontier science, has the potential to break down all the obstacles to be more effective and secure drug delivery system. It is possible to develop nanopolymer based drug carrier that can target drugs with extreme accuracy. Polymers can advance drug delivery technologies by allowing controlled release of therapeutic drugs in stable amounts over long duration of time. For controlled drug delivery, biodegradable synthetic polymers have various benefits over non-biodegradable polymers. Biodegradable polymer either are less toxic or non-toxic. Polylactic Acid (PLA) is one of the most remarkable amphipathic polymers which make it one of the most suitable materials for polymeric micelles. Amphiphilic nanomaterial, such as Polyethylene Glycol (PEG), is one of the most promising carrier for tumor targeting. PLA-PEG as a copolymer has been generally utilized as drug delivery system for the various types of cancer. Chemotherapeutic drugs are stacked into PLA-PEG copolymer and as a result their duration time delays, hence medications arrive at specific tumor site.
    Keywords:  Cancer therapeutics; Carrier; Nanotechnology; Polymer; Targeted drug delivery
    DOI:  https://doi.org/10.1007/s13205-021-03105-y
  6. Biomater Sci. 2022 Jan 26.
      The instinctive protective stress responses of tumor cells hamper low-temperature photothermal therapy (LTPTT), resulting in tumor recurrence and metastasis. The rapid blood clearance and low-efficiency tumor enrichment of nanomedicines also decrease the efficacy of LTPTT. In this study, we fabricated coassembled photothermal agents (indocyanine green, ICG) and autophagy inhibitors (chloroquine, CQ) and red blood cell and cancer cell hybrid membrane (RCm)-camouflaged ICGCQ@RCm nanoparticles (ICGCQ@RCm NPs) to enhance tumor LTPTT. The ICGCQ@RCm NPs exhibited prolonged blood drug circulation and markedly enhanced drug accumulation in tumor tissues. The ICGCQ@RCm NPs reduced the thermal tolerance of tumor cells to sensitize ICG-mediated LTPTT by inhibiting protective autophagy. The ICGCQ@RCm NPs exerted strong immunogenic cell death (ICD) after efficient LTPTT to activate antitumor immunity. In addition, ICGCQ@RCms optimized the therapeutic efficacy by imaging-guided LTPTT, taking advantage of the near-infrared (NIR) fluorescence of ICG. Consequently, the ICGCQ@RCm NPs effectively inhibited tumors under mild LTPTT, significantly suppressed tumor metastasis and prolonged the survival time of tumor-bearing mice. Furthermore, the ICGCQ@RCm NPs showed high biosafety in vitro and in vivo. The ICGCQ@RCm NPs demonstrated tumor-targeting and imaging-guided autophagy inhibition-sensitized LTPTT using two Food and Drug Administration (FDA)-approved drugs, which have great potential for clinical application.
    DOI:  https://doi.org/10.1039/d1bm01888d
  7. Sci Rep. 2022 Jan 25. 12(1): 1297
      Δ9-tetrahydrocannabinol (Δ9-THC) is known for its antitumor activity and palliative effects. However, its unfavorable physicochemical and biopharmaceutical properties, including low bioavailability, psychotropic side effects and resistance mechanisms associated to dosing make mandatory the development of successful drug delivery systems. In this work, transferring (Tf) surface-modified Δ9-THC-loaded poly(lactide-co-glycolic) nanoparticles (Tf-THC-PLGA NPs) were proposed and evaluated as novel THC-based anticancer therapy. Furthermore, in order to assess the interaction of both the nanocarrier and the loaded drug with cancer cells, a double-fluorescent strategy was applied, including the chemical conjugation of a dye to the nanoparticle polymer along with the encapsulation of either a lipophilic or a hydrophilic dye. Tf-THC PLGA NPs exerted a cell viability decreased down to 17% vs. 88% of plain nanoparticles, while their internalization was significantly slower than plain nanoparticles. Uptake studies in the presence of inhibitors indicated that the nanoparticles were internalized through cholesterol-associated and clathrin-mediated mechanisms. Overall, Tf-modification of PLGA NPs showed to be a highly promising approach for Δ9-THC-based antitumor therapies, potentially maximizing the amount of drug released in a sustained manner at the surface of cells bearing cannabinoid receptors.
    DOI:  https://doi.org/10.1038/s41598-022-05301-z
  8. Curr Drug Deliv. 2022 Jan 17.
      Cancer is one of the main reasons for mortality worldwide. Chemotherapeutic agents have been effectively designed to increase certain patients' survival rates, but ordinarily designed chemotherapeutic agents necessarily deliver toxic chemotherapeutic drugs to healthy tissues, resulting in serious side effects. Cancer cells can often acquire drug resistance after repeated dosing of current chemotherapeutic agents, restricting their efficacy. Given such obstacles, investigators have attempted to distribute chemotherapeutic agents using targeted drug delivery systems (DDSs), especially nanotechnology-based DDSs. Lipid-Based Nanoparticles (LBNPs) are a large and complex class of substances that have been utilized to manage a variety of diseases, mostly cancer. Liposomes seem to be the most frequently employed LBNPs, owing to their high biocompatibility, bioactivity, stability, and flexibility; howbeit Solid Lipid Nanoparticles (SLNs) and Non-structured Lipid Carriers (NLCs) have lately received a lot of interest. Besides that, there are several reports that concentrate on novel therapies via LBNPs to manage various forms of cancer. In the present research, the latest improvements in the application of LBNPs have been shown to deliver different therapeutic agents to cancerous cells and have been demonstrated LBNPs also can be a quite successful candidate in cancer therapy for subsequent use.
    Keywords:  Cancer; Drug; Lipid-based Carriers; Nanoparticle; Non structured lipid carriers; Targeted Delivery
    DOI:  https://doi.org/10.2174/1567201819666220117102658
  9. Carcinogenesis. 2022 Jan 28. pii: bgac008. [Epub ahead of print]
      Colorectal cancer (CRC) is one of the most frequent malignancies worldwide and remains one of the leading causes of cancer-related deaths in the United States. The high degree of morbidity and mortality associated with this disease is largely due to the inadequate efficacy of current treatments as well the development of chemoresistance. In recent years, several pharmaceutical agents screened from natural products have shown the promise to offer a safe, inexpensive, and synergistically multi-targeted treatment option in various cancer. Given the growing evidence of anti-carcinogenic properties of two natural compounds, melatonin (MLT) and andrographis (Andro), we aimed to evaluate their synergistic anti-cancer effects in CRC. We demonstrate that indeed these two compounds possessed a synergistic anti-cancer effect in terms of their ability to inhibit cell viability, suppression of colony-formation and induction of apoptosis (p<0.05). In line with our in-vitro findings, we were able to validate this combinatorial anti-cancer activity in xenograft animal models (p<0.001) as well as tumor-derived 3D organoids (p<0.01). RNA-sequencing analysis revealed candidate pathways and genes that mediated anti-tumor efficacy of MLT and Andro in CRC, among which autophagy pathway and related genes, including NR4A1, CTSL and Atg12, were found to be primarily responsible for the increased anti-cancer effect by the two natural products. In conclusion, our data reveal a potent and synergistic therapeutic effect of MLT and Andro in the treatment of CRC and provides a rationale for suppressing autophagy in cancer cells as a potential therapeutic strategy for CRC.
    Keywords:  Andrographis; Autophagy; Colorectal cancer; Melatonin; Synergistic effect
    DOI:  https://doi.org/10.1093/carcin/bgac008
  10. Spinal Cord. 2022 Jan 27.
      STUDY DESIGN: Narrative review.OBJECTIVES: The objective was to summarize the literature on nanoplatforms in spinal cord injury (SCI) and describe their effect in facilitating experiments for SCI. Currently, the primary clinical treatment for neuropathic pain (NP) is drug therapy, but these traditional drugs have many disadvantages, such as high dose, rapid clearance from the circulatory system, off-target side effects, and cytotoxicity. Moreover, the treatment for NP is complicated by the existence of blood-brain barrier. In recent years, nanomedicine has been receiving increased attention; this novel modality could help deliver drugs to treat NP via nanoplatforms, making it a promising alternative therapy. The use of nanoplatforms can enhance pharmaceutic effectiveness by either avoiding rapid clearance from the blood or ensuring adequate concentration in the lesion.
    METHODS: A literature review was conducted, with a focus on nanoplatforms that have been described in the experimental studies of neuropathic pain.
    RESULTS: We provide a brief description of the roles of liposomes, polymeric nanoparticles, metal nanoparticles, micelles, and dendrimers in the treatment of NP and discuss the prospective development of the nanoplatform system for NP.
    CONCLUSION: The emergence of various nanoplatform drug delivery systems can provide an advantageous resource tool for real-time diagnosis and effective treatment of SCI-related NP.
    DOI:  https://doi.org/10.1038/s41393-021-00746-x
  11. Mol Biol Rep. 2022 Jan 25.
      BACKGROUND: As patients with triple-negative breast cancer (TNBC) have a very weak response to hormone inhibition or anti-HER2 therapy, traditional chemotherapy is commonly used in these patients. Recently, carboplatin has been approved for the clinical treatment of TNBC. However, several patients exhibit resistance to carboplatin treatment. Therefore, strategies to enhance the antitumor effect of carboplatin need to be explored. In our study, we investigated the function of curcumin in increasing the response to carboplatin.METHODS AND RESULTS: MTT and colony formation assays were used to evaluate cell viability after carboplatin and curcumin treatment. In addition, we conducted flow cytometric and Western blot analyses to examine cellular apoptosis. Subsequently, molecular and biochemical experiments were used to explore the mechanism by which curcumin sensitized TNBC to carboplatin treatment. We demonstrated that different TNBC cells responded differently to carboplatin. Low-dose carboplatin killed CAL-51 cells but barely influenced CAL-51-R and MDA-MB-231 cells. To improve the sensitivity of resistant TNBC cells to carboplatin, combined treatment with curcumin was applied and was found to inhibit proliferation and induce apoptosis. Mechanistically, curcumin exerted its anticancer effect by increasing reactive oxygen species (ROS) production, which downregulated the DNA repair protein RAD51, leading to upregulation of γH2AX. As expected, ROS scavenger NAC reversed the inhibitory effect on growth and DNA repair pathway activity mediated by curcumin.
    CONCLUSION: Collectively, our data demonstrate that curcumin sensitizes TNBC to the anticancer effect of carboplatin by increasing ROS-induced DNA damage, thus providing an effective combination treatment strategy for TNBC.
    Keywords:  Carboplatin; Curcumin; DNA repair; ROS; Triple negative breast cancer (TNBC)
    DOI:  https://doi.org/10.1007/s11033-022-07162-1
  12. Colloids Surf B Biointerfaces. 2022 Jan 20. pii: S0927-7765(22)00028-5. [Epub ahead of print]212 112345
      Despite its high antitumor activity, the clinical application of chemotherapy is greatly impeded by lacking of specific accumulation and poor solubility. To address the above challenges, we designed a AS1411 aptamer modified nanoparticles based on molecular recognition of nucleobases. Firstly, a redox sensitive Paclitaxel-SS-Zidovudine (PZ) prodrug was synthesized. Then PZ/β-lapachone/AS1411/DSPE-PEG nanoparticles were prepared and AS1411 aptamer was connected through molecular recognition between the nucleoside analogue Zidovudine (ZDV) and the thymine on aptamer. DSPE-PEG (DP) was incorporated into nanoparticles to prolong the residence time of nanoparticles in the blood circulation. Furthermore, to realize the combination treatment, β-lapachone (LAP) has been incorporated into nanoparticles with high drug loading efficiency through the interaction of π-π stacking force and H-bonding between LAP and Paclitaxel (PTX). LAP can generate abundant exogenous reactive oxygen species (ROS) via the bioactivation of NAD(P)H: quinone oxidoreductase-1 (NQO1). Moreover, the connection of Zidovudine (ZDV) and AS1411 through molecular recognition of nucleobases further optimized the nanoparticles with high affinity to nucleolin which overexpressed on tumor cell membrane, thereby inducing the specific accumulation of nanoparticles in tumor sites. In vivo and in vitro studies showed that the obtained nanoparticles of PZ/LAP/AS1411/DP exhibited better tumor growth inhibition and lower systemic side effects. Herein, we have rationally conducted a novel self-codelivery system for effectively synergistic antitumor treatment.
    Keywords:  AS1411 aptamer modified; Molecular recognition of nucleobases; Redox sensitive nanoparticles; Small molecule prodrug; β-Lapachone
    DOI:  https://doi.org/10.1016/j.colsurfb.2022.112345
  13. Oncol Lett. 2022 Feb;23(2): 61
      Urothelial carcinoma (UC) is one of the most common cancer types of the urinary tract. UC is associated with poor 5-year survival rate, and resistance to cisplatin-based therapy remains a challenge for invasive bladder cancer treatment. Therefore, there is an urgent need to develop new drugs for advanced UC therapy. Auranofin (AF) was developed over 30 years ago for the treatment of rheumatoid arthritis and has been reported to exert an antitumor effect by increasing the level of reactive oxygen species (ROS) in cancer cells. The aim of the present study was to examine the effects of AF on cancer cell proliferation, cell cycle and apoptosis, either alone or in combination with cisplatin. AF induced cell death in two separate cell lines, HT 1376 and BFTC 909, in a concentration- and time-dependent manner by inducing cell cycle arrest. However, the distribution of cells in different phases of the cell cycle differed between the two cell lines, with G0/G1 cell cycle arrest in HT 1376 cells and S phase arrest in BFTC 909 cells. In addition, AF induced apoptosis in HT 1376, as well as redox imbalance in both HT 1376 and BFTC 909 cells. Cell viability was rescued following treatment with N-acetyl-L-cysteine, a ROS scavenger. Furthermore, AF treatment synergistically increased the cytotoxicity of HT 1376 and BFTC 909 cells when combined with cisplatin treatment. These findings suggest that AF may represent a potential candidate drug against UC and increase the therapeutic effect of cisplatin.
    Keywords:  auranofin; cisplatin; reactive oxygen species; synergy; urothelial carcinoma
    DOI:  https://doi.org/10.3892/ol.2021.13179
  14. J Biol Chem. 2022 Jan 20. pii: S0021-9258(22)00057-6. [Epub ahead of print] 101617
      Ferroptosis is an iron-dependent, non-apoptotic form of regulated cell death triggered by impaired redox and antioxidant machinery and propagated by the accumulation of toxic lipid peroxides. A compendium of experimental studies suggest that ferroptosis is tumor-suppressive. Sensitivity or resistance to ferroptosis can be regulated by cell-autonomous and non-cell-autonomous metabolic mechanisms. This includes a role for ferroptosis that extends beyond the tumor cells themselves, mediated by components of the tumor microenvironment, including T cells and other immune cells. Herein, we review the intrinsic and extrinsic factors that promote the sensitivity of cancer cells to ferroptosis and conclude by describing approaches to harness the full utility of ferroptotic agents as therapeutic options for cancer therapy.
    Keywords:  cancer; ferroptosis; metabolism; tumor immunity; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.jbc.2022.101617
  15. Front Pharmacol. 2021 ;12 809125
      The stimuli-responsive polymer-based platform for controlled drug delivery has gained increasing attention in treating hepatocellular carcinoma (HCC) owing to the fascinating biocompatibility and biodegradability, improved antitumor efficacy, and negligible side effects recently. Herein, a disulfide bond-contained polypeptide nanogel, methoxy poly(ethylene glycol)-poly(l-phenylalanine-co-l-cystine) [mPEG-P(LP-co-LC)] nanogel, which could be responsive to the intracellular reduction microenvironments, was developed to deliver lenvatinib (LEN), an inhibitor of multiple receptor tyrosine kinases, for HCC therapy. The lenvatinib-loaded nanogel (NG/LEN) displayed concise drug delivery under the stimulus of glutathione in the cancer cells. Furthermore, the intracellular reduction-responsive nanomedicine NG/LEN showed excellent antitumor effect and almost no side effects toward both subcutaneous and orthotopic HCC tumor-allografted mice in comparison to free drug. The excellent tumor-inhibition efficacy with negligible side effects demonstrated the potential of NG/LEN for clinical molecular targeted therapy of gastrointestinal carcinoma in the future.
    Keywords:  hepatocellular carcinoma; lenvatinib; molecular targeted therapy; polypeptide; reduction-responsive nanomedicine
    DOI:  https://doi.org/10.3389/fphar.2021.809125
  16. Oxid Med Cell Longev. 2022 ;2022 7928200
      Cancer is one of the important causes of death worldwide. Despite remarkable improvements in cancer research in the past few decades, several cancer patients still cannot be cured owing to the development of drug resistance. Natural sources might have prominence as potential drug candidates. Among the several chemical classes of natural products, anthraquinones are characterized by their large structural variety, noticeable biological activity, and low toxicity. Aloe emodin, an anthraquinone derivative, is a natural compound found in the roots and rhizomes of many plants. This compound has proven its antineoplastic, anti-inflammatory, antiangiogenic, and antiproliferative potential as well as ability to prevent cancer metastasis and potential in reversing multidrug resistance of cancer cells. The anticancer property of aloe emodin, a broad-spectrum inhibitory agent of cancer cells, has been detailed in many biological pathways. In cancer cells, these molecular mechanisms consist of inhibition of cell growth and proliferation, cell cycle arrest deterioration, initiation of apoptosis, antimetastasis, and antiangiogenic effect. In accordance with the strategy of developing potential drug candidates from natural products, aloe emodin's low bioavailability has been tried to be overcome by structural modifications and nanocarrier systems. Consequently, this review summarizes the antiproliferative and anticarcinogenic properties of aloe emodin, as well as the enhanced activity of its derivatives and the advantages of drug delivery systems on bioavailability.
    DOI:  https://doi.org/10.1155/2022/7928200
  17. J Appl Biomater Funct Mater. 2022 Jan-Dec;20:20 22808000211073729
      Hydrogels can maintain a high local drug concentration during treatments and may be useful to local targeting diseased areas. We propose a pH sensitive hydrogel consisting of poly-vinylpyrrolidone (PVP) and chitosan as a new treatment method for KRAS mutant lung cancer. Addition of dopamine improved the drug loading and release effects of this hydrogel. We demonstrate that Tasquinimod-loading of this dopamine-modified pH sensitive hydrogel is more effective than Tasquinimod alone for inhibiting the proliferation of KRAS mutant lung cancer cells. Combination of conventional drugs with hydrogels may thus provide a new treatment modality for lung cancer.
    Keywords:  Hydrogels; KRAS mutant lung cancer; Tasquinimod; cancer
    DOI:  https://doi.org/10.1177/22808000211073729
  18. Front Oncol. 2021 ;11 780655
      Non-small cell lung cancer (NSCLC) is a frequent type of cancer, which is mainly characterized clinically by high aggressiveness and high mortality. KRAS oncoprotein is the most common molecular protein detected in NSCLC, accounting for 25% of all oncogenic mutations. Constitutive activation of the KRAS oncoprotein triggers an intracellular cascade in cancer cells, leading to uncontrolled cell proliferation of cancer cells and aberrant cell survival states. The results of multiple clinical trials have shown that different KRAS mutation subtypes exhibit different sensitivities to different chemotherapy regimens. Meanwhile, anti-angiogenic drugs have shown differential efficacy for different subtypes of KRAS mutated lung cancer. It was explored to find if the specificity of the KRAS mutation subtype would affect PD-L1 expression, so immunotherapy would be of potential clinical value for the treatment of some types of KRAS mutations. It was discovered that the specificity of the KRAS mutation affected PD-L1, which opened up immunotherapy as a potential clinical treatment option. After several breakthrough studies, the preliminary test data of many early clinical trials showed that it is possible to directly inhibit KRAS G12C mutation, which has been proved to be a targeted treatment that is suitable for about 10%-12% of patients with advanced NSCLC, having a significant impact on the prolongation of their survival and the improvement of their quality of life. This article reviews the latest progress of treatments for NSCLC with KRAS mutation, in order to gain insight into the biological diversity of lung cancer cells and their potential clinical implications, thereby enabling individualized treatment for patients with KRAS-mutant NSCLC.
    Keywords:  KRAS; NSCLC; chemotherapy; immunotherapy; targeted therapy
    DOI:  https://doi.org/10.3389/fonc.2021.780655
  19. Int J Pharm. 2022 Jan 24. pii: S0378-5173(22)00062-X. [Epub ahead of print] 121509
      The potential of combination therapy using nanoparticle delivery systems in improving triple-negative breast cancer treatment efficacy remains to be explored. Here, we report a novel nanoparticle system using a cholesterol biguanide conjugate hydrochloride (CBH) as both a drug and carrier to load magnolol (MAG). Poly(ethylene glycol)-poly(lactic-co-glycolic acid) (mPEG-PLGA) and aminoethyl anisamide-poly(ethylene glycol)-poly(lactic-co-glycolic acid) (AEAA-PEG-PLGA) were added to form nanoparticles. Nanoparticles accumulated most in tumor tissues when the weight ratio of AEAA-PEG-PLGA to mPEG-PLGA was 4:1. MAG and CBH exerted a synergistic inhibitory effect on 4T1 cells. An in vitro study showed that nanoparticles displayed the highest tumor cell uptake rate, highest apoptosis rate, and strongest inhibitory effect on tumor cell migration and monoclonal formation. CBH might promote nanoparticle uptake by cells and lysosomal escape. After intravenous administration to mice with 4T1 breast tumors in situ, the nanoparticles inhibited tumor growth without obvious toxicity. Western blot results showed that nanoparticles altered the levels of p53, p-AKT, and p-AMPK in the tumor tissue. Moreover, cell apoptosis was found in the same area of H&E-stained and TUNEL-stained tumors treated with the nanoparticles. Collectively, this nanoparticle system provides a novel combination drug delivery strategy for treating triple-negative breast cancer.
    Keywords:  4T1; cholesteryl biguanide conjugate hydrochloride; combination therapy; lysosomal escape; magnolol; nanoparticles; triple-negative breast cancer
    DOI:  https://doi.org/10.1016/j.ijpharm.2022.121509
  20. Acta Biomater. 2022 Jan 24. pii: S1742-7061(22)00056-3. [Epub ahead of print]
      Mounting evidence shows that tumor hypoxia stress promotes tumor invasion and metastasis and induces therapeutic resistance. Oxygen-independent Fenton reaction, which refers to the iron-catalyzed conversion of endogenous hydrogen peroxide (H2O2) to hydroxyl radical (•OH), has been designed for ferroptosis therapy. Nevertheless, the treatment efficiency is compromised by limited H2O2 content and limited tumor retention and penetration of nanoparticles. Herein, we designed a tumor-acidity and bioorthogonal chemistry mediated construction and deconstruction of drug depots for tumor ferroptosis under normoxia and hypoxia. Briefly, the dendritic poly(amidoamine) (PAMAM, G4) was modified using cinnamaldehyde (CA) to deplete GSH and increase H2O2 levels, and ferrocene (Ferr) served as Fenton reaction catalyst to generate PFC. Subsequently, PFC was modified with maleic acid amide with slow pH-response rate and poly(2-azepane ethyl methacrylate) (PAEMA) with rapid pH-response rate, accompanied with highly efficient bioorthogonal chemistry to construct and deconstruct drug depots for enhanced tumor retention and penetration. The small-sized PFC potentially induced H2O2 self-supplied ferroptosis under normoxia and hypoxia. In sum, this work utilizes two tumoral acidity-responsive groups with different response rates and highly efficient bioorthogonal click chemistry, which paves a way for ferroptosis and provides a general drug delivery strategy with enhanced tumor retention and penetration. STATEMENT OF SIGNIFICANCE: : Oxygen independent Fenton reaction refers to the conversion of endogenous H2O2 to •OH which has been designed for ferroptosis therapy. Nevertheless, limited H2O2 level and abundant GSH in tumor cells could both compromise the treatment efficiency. Herein, we developed a tumor-acidity and bioorthogonal chemistry mediated construction and deconstruction of drug depots, which elevate the intracellular H2O2 level and deplete GSH for tumor ferroptosis under normoxia and hypoxia microenvironment. This work utilizes two tumoral acidity response groups with different response rates and highly efficient bioorthogonal click reactions, which paves a way for tumor cell ferroptosis and provides a general drug delivery strategy for enhanced tumor accumulation and penetration.
    Keywords:  Bioorthogonal chemistry; drug delivery; ferroptosis; pH-response; tumor penetration
    DOI:  https://doi.org/10.1016/j.actbio.2022.01.046
  21. Drug Metab Dispos. 2022 Jan 22. pii: DMD-MR-2021-000568. [Epub ahead of print]
      Polyethylene glycol is one of the most commonly used synthetic macromolecular polymers for modifying small molecule drugs, peptides, proteins or Nano-drug delivery systems to improve their water solubility, biocompatibility and stability. Block copolymers containing PEG have been widely used in Nano-drug delivery systems such as solid lipid nanoparticles, polymeric nanoparticles, polymeric micelles and liposomes. To date, although numerous PEGylated Nano-drug delivery systems have been developed, only a few have been approved for clinical application. Poor safety and effectivity are important reasons for the high failure of Nano-drug delivery systems clinical trials. These factors are not only related to the loaded drugs and released drugs, but also related to the nanocarriers. Therefore, investigating the in vivo spatiotemporal fate of block copolymers containing PEG used in Nano-drug delivery systems is necessary and important for evaluating their safety, efficacy and toxicity. In this article, we will review the information that has been reported about the absorption, distribution, metabolism and excretion of block copolymers containing PEG. We believe this review is helpful to understand the biological fate of block copolymers containing PEG. Significance Statement This review describes pharmacokinetic study of block copolymers containing polyethylene. The main focus of this paper is the in vivo fate of these PEG related copolymers after their release from Nanocarriers. This review is helpful for understanding of the in vivo fate of block copolymers containing polyethylene glycol used in Nanocarrier drug delivery system.
    Keywords:  ADME; pharmacokinetic
    DOI:  https://doi.org/10.1124/dmd.121.000568
  22. J Ethnopharmacol. 2022 Jan 24. pii: S0378-8741(22)00069-1. [Epub ahead of print] 115035
      ETHNOPHARMACOLOGICAL RELEVANCE: With over 950 species, Cyperus is one of the most promising health boosting genera in the Cyperaceae family. Traditional uses of Cyperus sp. Have been described for gastrointestinal blood abnormalities, menstrual irregularities, and inflammatory diseases, among others. Cyperus tegetum Roxb belonging to Cyperaceae family, is used in traditional medicine to treat skin cancers.AIM OF THE STUDY: The present study was carried out to explore the potential effect of the extract of the plant Cyperus tegetum against different pharmacological activity namely inflammatory, analgesic activity as well as skin cancer activity in mice.
    MATERIALS AND METHODS: Cytotoxicity of the extract was measured by MTT and Live/death assay on HeLa cell line. Skin cancer was induced by 7,12-dimethylbenz(a) anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) in mice to measure its effects.
    RESULT: Stigmasterol and some poly phenolic compounds are identified using HPTLC process from the methanol extract of the rhizome of the plant Cyperus tegetum (CT-II). After confirmation of the presence of different polyphenolic compound and triterpenoids in the extract, it was subject to MTT and Live/death assay on HeLa cell line. From the observation it could be concluded that the IC50 of the extract is 300 μg/ml. Thus, the CT II was evaluated further for its in vivo anticancer property. In the tumorigenesis study, the number of tumor growths, the area and weight of the tumor are significantly decreases with increment in the dose of CT-II extract and some elevated enzyme release in renal (creatinine, urea) as well as hepatic (AST, ALT, ALP) enzymes are also controlled with the increased dose of the same extract. The elevated enzyme release may be due to cancer induced rupture of the plasma and cellular damage. This CT-II extract also exhibits some other pharmacological activity like anti-inflammatory and analgesic activity.
    CONCLUSION: As metabolic activation via carcinogens and inflammation response plays important role in development of cancer, antioxidant, anti-inflammatory and analgesic properties can be correlated with anti-cancer properties. Taken all the above studies, it was illustrated that the extract of Cyperus tegetum might be a promising compound to reduce skin cancer risk.
    Keywords:  12-O-Tetradecanoylphorbol-13-acetate; 7,12-dimethylbenz(a) anthracene; Cyperus tegetum; HeLa cell Line
    DOI:  https://doi.org/10.1016/j.jep.2022.115035
  23. Front Pharmacol. 2021 ;12 781425
      Lung cancer is one of the malignant tumors that has seen the most rapid growth in terms of morbidity and mortality in recent years, posing the biggest threat to people's health and lives. In recent years, the nano-drug loading system has made significant progress in the detection, diagnosis, and treatment of lung cancer. Nanomaterials are used to specifically target tumor tissue to minimize therapeutic adverse effects and increase bioavailability. It is achieved primarily through two mechanisms: passive targeting, which entails the use of enhanced penetration and retention (EPR) effect, and active targeting, which entails the loading recognition ligands for tumor marker molecules onto nanomaterials. However, it has been demonstrated that the EPR effect is effective in rodents but not in humans. Taking this into consideration, researchers paid significant attention to the active targeting nano-drug loading system. Additionally, it has been demonstrated to have a higher affinity and specificity for tumor cells. In this review, it describes the development of research into active targeted nano-drug delivery systems for lung cancer treatment from the receptors' or targets' perspective. We anticipate that this study will help biomedical researchers use nanoparticles (NPs) to treat lung cancer by providing more and novel drug delivery strategies or solid ligands.
    Keywords:  active targeting; biological ligands; drug delivery; lung cancer; nanoparticle; receptors
    DOI:  https://doi.org/10.3389/fphar.2021.781425
  24. Iran J Basic Med Sci. 2021 Sep;24(9): 1159-1172
      Metabolic syndrome (MetS) has turned into a prevalent condition that has imposed a tremendous financial strain on public health care systems. It is believed that the MetS consists of four main factors (hypertension, dyslipidemia, hyperglycemia, and obesity) and may lead to cardiovascular events. Camellia sinesis, in the form of green tea (GT), is one of the most consuming beverages worldwide. Catechins are the dominant component of green tea leaves. Epigallocatechin gallate has the maximum potency. GT has been widely used as a supplement in various health conditions. As the oxidative stress pathway is one of the probable mechanisms of MetS etiologies and GT beneficial effects, GT may be a novel strategy to overcome the MetS. This review aims to reveal the probable pharmacological effects of GT on MetS. The last 10-year original articles on MetS parameters and GT have been gathered in this review. This manuscript has summarized the probable effects of green tea and its catechins on MetS and focused on each different aspect of MetS separately, which can be used as a basis for further investigations for introducing effective compounds as a way to interfere with MetS. It seems that GT can reduce MetS parameters commonly via anti-inflammatory and anti-oxidative mechanisms. Further clinical trials are needed to confirm the use of GT and its constituents for the treatment of MetS.
    Keywords:  Diabetes; Dyslipidemia; Green tea; Hypertension; Metabolic syndrome; Obesity
    DOI:  https://doi.org/10.22038/IJBMS.2021.52980.11943
  25. Bioact Mater. 2022 Jun;12 1-15
      Critical bone defects caused by extensive excision of malignant bone tumor and the probability of tumor recurrence due to residual tumor cells make malignant bone tumor treatment a major clinical challenge. The present therapeutic strategy concentrates on implanting bone substitutes for defect filling but suffers from failures in both enhancing bone regeneration and inhibiting the growth of tumor cells. Herein, Cu and Mn-doped borosilicate nanoparticles (BSNs) were developed for syncretic bone repairing and anti-tumor treatment, which can enhance bone regeneration through the osteogenic effects of Cu2+ and Mn3+ ions and meanwhile induce tumor cells apoptosis through the hydroxyl radicals produced by the Fenton-like reactions of Cu2+ and Mn3+ ions. In vitro study showed that both osteogenic differentiation of BMSCs and angiogenesis of endothelial cells were promoted by BSNs, and consistently the critical bone defects of rats were efficiently repaired by BSNs through in vivo evaluation. Meanwhile, BSNs could generate hydroxyl radicals through Fenton-like reactions in the simulated tumor microenvironment, promote the generation of intracellular reactive oxygen species, and eventually induce tumor cell apoptosis. Besides, subcutaneous tumors of mice were effectively inhibited by BSNs without causing toxic side effects to normal tissues and organs. Altogether, Cu and Mn-doped BSNs developed in this work performed dual functions of enhancing osteogenesis and angiogenesis for bone regeneration, and inhibiting tumor growth for chemodynamic therapy, thus holding a great potential for syncretic bone repairing and anti-tumor therapy.
    Keywords:  Bio-ceramics; Bone regeneration; Bone tumor treatment; Borosilicate; Chemodynamic therapy; Tumor therapy
    DOI:  https://doi.org/10.1016/j.bioactmat.2021.10.030
  26. Oncol Lett. 2022 Feb;23(2): 70
      Colorectal cancer (CRC) is one of the most prevalent gastrointestinal tumors worldwide, with a high mortality rate. The lncRNA colorectal neoplasia differentially expressed (CRNDE) is upregulated in CRC and is involved in regulating the apoptosis, proliferation, and drug sensitivity of CRC cells. However, the specific underlying mechanisms remain to be elucidated. The aim of the present study was to investigate the effects of CRNDE on the Warburg effect in CRC cells, as well as the associated mechanisms. The expression of CRNDE in HCT-116 cells was overexpressed or silenced by transfection. Apoptosis, cisplatin sensitivity, the Warburg effect, and Akt/mTOR activation were evaluated. The results demonstrated that CRNDE inhibition decreased the proliferation and increased the apoptosis and cisplatin sensitivity of HCT-116 cells. In addition, CRNDE inhibition attenuated the Warburg effect in HCT-116 cells, as verified by a decrease in ATP production, lactic acid levels, glucose uptake, and the expression of Warburg effect-related enzymes (GLUT1, LDHA, HK2, and PKM2). CRNDE inhibition also suppressed the activity of the Akt/mTORC1 pathway, as demonstrated by the decreased phosphorylation of Akt, S6K, S6, and mTOR and the increased phosphorylation of 4EBP-1 and EIF-4E. The CRNDE overexpression-induced increase in ATP and lactic acid levels and glucose uptake in HCT-116 cells was reversed by Akt and mTOR inhibitors. These findings indicate that CRNDE silencing promotes apoptosis and enhances cisplatin sensitivity in colorectal carcinoma cells, which may be mediated by the regulation of the Warburg effect via the Akt/mTORC1 pathway. The present study thus provides a potential strategy for the treatment of CRC.
    Keywords:  Akt/mTORC1 pathway; Warburg effect; colorectal cancer; drug sensitivity
    DOI:  https://doi.org/10.3892/ol.2022.13190
  27. Front Oncol. 2021 ;11 789330
      Digestive tumours, a common kind of malignancy worldwide, have recently led to the most tumour-related deaths. Angiogenesis, the process of forming novel blood vessels from pre-existing vessels, is involved in various physiological and pathological processes in the body. Many studies suggest that abnormal angiogenesis plays an important role in the growth, progression, and metastasis of digestive tumours. Therefore, anti-angiogenic therapy is considered a promising target for improving therapeutic efficacy. Traditional strategies such as bevacizumab and regorafenib can target and block the activity of proangiogenic factors to treat digestive tumours. However, due to resistance and some limitations, such as poor pharmacokinetics, their efficacy is not always satisfactory. In recent years, nanotechnology-based anti-angiogenic therapies have emerged as a new way to treat digestive tumours. Compared with commonly used drugs, nanoparticles show great potential in tumour targeted delivery, controlled drug release, prolonged cycle time, and increased drug bioavailability. Therefore, anti-angiogenic nanoparticles may be an effective complementary therapy to treat digestive tumours. In this review, we outline the different mechanisms of angiogenesis, the effects of nanoparticles on angiogenesis, and their biomedical applications in various kinds of digestive tumours. In addition, the opportunities and challenges are briefly discussed.
    Keywords:  angiogenesis; anti-angiogenesis; digestive tumours; nanoparticles; therapy
    DOI:  https://doi.org/10.3389/fonc.2021.789330
  28. Phytother Res. 2022 Jan 27.
      The nervous system is one of the most complex physiological systems, and central nervous system diseases (CNSDs) are serious diseases that affect human health. Ginseng (Panax L.), the root of Panax species, are famous Chinese herbs that have been used for various diseases in China, Japan, and Korea since ancient times, and remain a popular natural medicine used worldwide in modern times. Ginsenosides are the main active components of ginseng, and increasing evidence has demonstrated that ginsenosides can prevent CNSDs, including neurodegenerative diseases, memory and cognitive impairment, cerebral ischemia injury, depression, brain glioma, multiple sclerosis, which has been confirmed in numerous studies. Therefore, this review summarizes the potential pathways by which ginsenosides affect the pathogenesis of CNSDs mainly including antioxidant effects, anti-inflammatory effects, anti-apoptotic effects, and nerve protection, which provides novel ideas for the treatment of CNSDs.
    Keywords:  central nervous system diseases; ginsenosides; mechanisms; pharmacological actions; therapeutics
    DOI:  https://doi.org/10.1002/ptr.7395
  29. Front Oncol. 2021 ;11 814085
      Metabolic reprogramming is one of the hallmarks of malignant tumors, which provides energy and material basis for tumor rapid proliferation, immune escape, as well as extensive invasion and metastasis. Blocking the energy and material supply of tumor cells is one of the strategies to treat tumor, however tumor cell metabolic heterogeneity prevents metabolic-based anti-cancer treatment. Therefore, searching for the key metabolic factors that regulate cell cancerous change and tumor recurrence has become a major challenge. Emerging technology--single-cell metabolomics is different from the traditional metabolomics that obtains average information of a group of cells. Single-cell metabolomics identifies the metabolites of single cells in different states by mass spectrometry, and captures the molecular biological information of the energy and substances synthesized in single cells, which provides more detailed information for tumor treatment metabolic target screening. This review will combine the current research status of tumor cell metabolism with the advantages of single-cell metabolomics technology, and explore the role of single-cell sequencing technology in searching key factors regulating tumor metabolism. The addition of single-cell technology will accelerate the development of metabolism-based anti-cancer strategies, which may greatly improve the prognostic survival rate of cancer patients.
    Keywords:  cancer metabolism; metabolic heterogeneity; metabolic reprogramming; single-cell metabolomics; tumor drug resistance
    DOI:  https://doi.org/10.3389/fonc.2021.814085
  30. ACS Appl Mater Interfaces. 2022 Jan 25.
      In situ oxygen generation is the most common strategy to boost reactive oxygen species (ROS) for enhancing the efficacy of phototherapy in cancer, including photodynamic therapy (PDT) and photothermal therapy (PTT). However, hyperoxidation or hyperthermia often triggers stress-defense pathways and promotes tumor cell survival, thus severely limiting the therapeutic efficacy. To overcome the tumor hypoxia and thermal resistance existing in phototherapy, we constructed a self-synergistic nanoplatform for tumors by incorporating brusatol, a nuclear factor erythroid 2-related factor (Nrf2) inhibitor, into the silica nanonetwork. It was then sequentially decorated with MnO2 and the photosensitizer chlorin e6 (Ce6) and then coated with poly(ethylene glycol)-folate (PEG-FA)-functionalized polydopamine (PDA) (designated as brusatol/silica@MnO2/Ce6@PDA-PEG-FA). As an oxygen generator, MnO2 can promote ROS production, which not only directly enhances Ce6-mediated PDT but also strengthens PDA-mediated PTT by attacking heat shock proteins (HSPs). Particularly, brusatol could efficiently inhibit the activation of Nrf2 defense pathway under hyperoxidation and hyperthermia and cause glutathione peroxidase 4 (GPX4) and ferritin heavy chain (FTH) inactivation, thereby inducing ferroptosis and ultimately enhancing the phototherapeutic effects. By exploiting these features, brusatol/silica@MnO2/Ce6@PDA-PEG-FA exhibited excellent antitumor efficacy with enhanced PDT and PTT both in in vitro and in vivo studies. Overall, our work highlights a promising strategy against hypoxia- and hyperthermia-associated resistance in phototherapy via suppressing stress-defense system and inducing ferroptosis.
    Keywords:  Nrf2; ROS; brusatol; ferroptosis; phototherapy; stress-defense pathway
    DOI:  https://doi.org/10.1021/acsami.1c22861
  31. Front Mol Biosci. 2021 ;8 791927
      The development of brain metastasis is a major cause of death in patients with breast cancer, characterized by rapid progression of the disease and poor prognosis, and lack of effective treatment has existed as an unresolved issue clinically. Extensive research has shown that a variety of metabolic changes associated with cellular metastasis exist in primary breast cancer or brain metastases, therefore to elucidate metabolic characteristics at each step of the metastasis cascade will provide important clues to the efficient treatment. In this review, we discuss the changes in metabolic patterns of breast cancer cells at every step of metastasis for exploring the potential therapeutic target based on metabolic reprogramming, and provide new insights on the design and development of drugs for breast cancer brain metastasis.
    Keywords:  brain metastasis; breast cancer; drug targets; metabolic reprogramming; metastatic cascade
    DOI:  https://doi.org/10.3389/fmolb.2021.791927
  32. Small. 2022 Jan 27. e2106342
      Ultrasmall nanoparticles are often grouped under the broad umbrella term of "nanoparticles" when reported in the literature. However, for biomedical applications, their small sizes give them intimate interactions with biological species and endow them with unique functional physiochemical properties. Carbon quantum dots (CQDs) are an emerging class of ultrasmall nanoparticles which have demonstrated considerable biocompatibility and have been employed as potent theragnostic platforms. These particles find application for increasing drug solubility and targeting, along with facilitating the passage of drugs across impermeable membranes (i.e., blood brain barrier). Further functionality can be triggered by various environmental conditions or external stimuli (i.e., pH, temperature, near Infrared (NIR) light, ultrasound), and their intrinsic fluorescence is valuable for diagnostic applications. The focus of this review is to shed light on the therapeutic potential of CQDs and identify how they travel through the body, reach their site of action, administer therapeutic effect, and are excreted. Investigation into their toxicity and compatibility with larger nanoparticle carriers is also examined. The future of CQDs for theragnostic applications is promising due to their multifunctional attributes and documented biocompatibility. As nanomaterial platforms become more commonplace in clinical treatments, the commercialization of CQD therapeutics is anticipated.
    Keywords:  ADME; cancer; carbon dots; metabolism; pharmacokinetics; toxicity
    DOI:  https://doi.org/10.1002/smll.202106342
  33. Bioact Mater. 2022 Jun;12 97-106
      The ideal photodynamic therapy (PDT) should effectively remove the primary tumor, and produce a stronger immune memory effect to inhibit the tumor recurrence and tumor metastasis. However, limited by the hypoxic and immunosuppressive microenvironment, the PDT efficiency is apparently low. Here, Chlorella (Chl.) is exploited to enhance local effect by producing oxygen to reverse hypoxia, and release adjuvants to reverse immunosuppressive microenvironment to enhance abscopal effect afterwards. Results from different animal models indicated that Chl. could enhance local effect and PDT related immune response. Ultimately, Chl. coupled PDT elicited anti-tumor effects toward established primary tumors (inhibition rate: 90%) and abscopal tumors (75%), controlled the challenged tumors (100%) and alleviated metastatic tumors (90%). This Chl. coupled PDT strategy can also produce a stronger anti-tumor immune memory effect. Overall, this Chl. coupled PDT strategy generates enhanced local tumor killing, boosts PDT-induced immune responses and promotes anti-tumor immune memory effect, which may be a great progress for realizing systemic effect of PDT.
    Keywords:  Chlorella; Controlled adjuvants release; Immune memory effect; Photodynamic therapy; Systemic antitumor immune response
    DOI:  https://doi.org/10.1016/j.bioactmat.2021.10.028
  34. Curr Cancer Drug Targets. 2022 Jan 26.
      PURPOSE: The aim is to develop a novel pH-responsive modified chitosan-based nanoparticles system for active loading of doxorubicin (DOX) and triggered intracellular release.METHODS: Nanoparticles were formed in an aqueous medium via ionic interaction between negatively charged chitosan derivative and positively charged DOX at neutral pH, and then transformed in situ into cisplatin (CIS) cross-linked nanoparticles through cross-linking the formed micelles via chelation interaction between the negatively charged polymeric carrier and cisplatin. Nanoparticles were characterized in terms of particle size and zeta potential using DLS and TEM. Drug loading efficiency and encapsulation efficiency were determined based on the physio-chemical proprieties of the polymer and the amount of the cross-linking agent. In vitro release studies were performed using the dialysis method at different pHs. Finally, the cytotoxic effects of these nanoparticles were performed against the MCF-7 BrCA cell line under different pHs.
    RESULTS: The average particle size of polymer alone and DOX nanoparticles was 277.401 ± 13.50 nm, and 290.20 ± 17.43 nm, respectively. The zeta potential was -14.6 ± 1.02 mV and -13.2 ± 0.55 mV, respectively, with a low polydispersity index. Drug loading and encapsulation deficiencies were determined, which were dependent on the amount of the cross-linking agent. In vitro release studies showed that the release of DOX from these nanoparticles was pH dependent. Moreover, results showed that the cytotoxicity magnitude of DOX-loaded nanoparticles against MCF-7 BrCA cells was higher compared with free DOX.
    CONCLUSION: These novel pH sensitive nanoparticles proved to be a promising Nano- drug delivery for tumor-targeted delivery of DOX.
    Keywords:  breast cancer cells; cisplatin; controlled drug release; cross-linked nanoparticles; modified chitosan; pH responsive nanoparticles
    DOI:  https://doi.org/10.2174/1568009622666220126100532
  35. Biochimie. 2022 Jan 20. pii: S0300-9084(22)00017-7. [Epub ahead of print]
      A characteristic of cancer cells is increased glucose uptake and glycolysis for energy production and hydroperoxide detoxification due to mitochondrial dysfunction. Thus, inhibition of glucose uptake and glycolysis represent smart novel therapy. We used 2-deoxyglucose (2DG) as a glycolysis inhibitor and acarbose (ACA), a specific alpha-glucosidase inhibitor, to decrease glucose uptake. Mice bearing mammary adenocarcinoma tumors were treated by 2DG and/or ACA. Relative tumor volume, tumor growth inhibition rate, relative body weight, glucose concentration, hexokinase-1 protein level by ELISA, pyruvate, and ATP (glycolysis products), reactive oxygen species (ROS), total glutathione T-GSH, apoptosis, and histopathology were measured in treated and untreated groups. Our results showed that combination therapy inhibited tumor volume and increased tumor growth inhibition rate, body weight reduction, decreasing glucose level, HK-1 level, and inhibition of glycolysis products. In addition, combination therapy induced oxidative stress, increase ROS, and decrease T-GSH. Furthermore, immunohistochemistry examination showed the broader area of apoptosis in breast cancer treated by combination agents. In conclusion, our result revealed that the novel combination inhibits glycolysis and glucose uptake and induced oxidative stress and apoptosis.
    Keywords:  Anti-cancer therapy; Apoptosis; Combination therapy; Glucose deprivation; Glycolysis inhibition; Oxidative stress
    DOI:  https://doi.org/10.1016/j.biochi.2022.01.007
  36. Photodiagnosis Photodyn Ther. 2022 Jan 20. pii: S1572-1000(22)00023-0. [Epub ahead of print] 102734
      BACKGROUND: Photodynamic therapy (PDT) is one of the effective methods that can be used in cancer treatment. In this study, we aimed to investigate the PDT-mediated anti-cancer effects of newly synthesized piperazine-substituted silicon phthalocyanine molecules on breast cancer cells.METHODS: The compounds were analyzed by different spectroscopic techniques (FT-IR, UV-vis, 1H-NMR, 13C-NMR, MS) and the absorbance characteristics were determined. The cytotoxic effects of silicon phthalocyanines on MDA-MB-231 breast cancer cells and non-tumorigenic MCF-10A cells were evaluated using MTT assay. Detection of apoptotic populations was performed by Annexin V/7AAD assay. H2DCFDA dye was used to analyze intracellular reactive oxygen species. The clonogenic activity and cellular motility were analyzed by colony formation assay and in vitro scratch assay, respectively. Caspase-3, PARP1, and cleaved-PARP1 protein levels were analyzed by western blot studies.
    RESULTS: Piperazine-substituted silicon phthalocyanines caused high levels of cytotoxic effects and apoptotic cell population in MDA-MB-231 cells, while low levels of cytotoxic effects were observed in MCF-10A cells. Following PDT, intense ROS formation was detected in MDA-MB-231 cells. Colony-forming capacity and cellular motility of MDA-MB-231 cells were highly restricted following PDT, whereas these effects were observed at lower levels in MCF-10A cells. Silicon phthalocyanines caused different effects on cleaved-PARP1 expressions of MDA-MB-231 and MCF-10A cells.
    CONCLUSION: These results suggest that piperazine-substituted silicon phthalocyanines can exert selective anti-cancer effects on breast cancer cells and activate cellular death through different molecular pathways. Hence, we believe that they may be used as effective photosensitizer agents in the future.
    Keywords:  Breast neoplasms; Photodynamic therapy; Piperazine; Reactive oxygen species; Silicon phthalocyanine
    DOI:  https://doi.org/10.1016/j.pdpdt.2022.102734
  37. Semin Cancer Biol. 2022 Jan 21. pii: S1044-579X(22)00013-X. [Epub ahead of print]
      Esophageal cancer (EC) is a common gastrointestinal malignancy with poor prognosis and high mortality. Although combined therapeutic strategies have been developed, the 5-year survival rate of patients with EC remains relatively poor. Conventional anti-cancer drug delivery techniques have some shortcomings, such as nontargeted delivery and nonspecific toxicity. Nanoparticles (NPs) provide a promising platform for delivering drugs in various therapeutic modalities for EC, which possess several remarkable advantages in cancer therapy, such as reduced side effects, prolonged circulation time, and preferential accumulation at the tumor site. In this review, we summarized various types of NPs applied in the treatment of EC, including polymers, micelles, liposomes, inorganic NPs and organic NPs. Meanwhile, we discussed the efficacy and safety of newly designed nanomedicine in various treatments of EC, including chemotherapy, radiotherapy, gene therapy, photodynamic therapy (PDT), photothermal therapy (PTT), and their synergetic therapy. In addition, nanomedicine applied in tumor imaging and diagnoses were also reviewed. Current studies have suggested the potential advantages of nanoformulations over conventional formulations. More researches to promote clinical translation of nanomedicine for EC are anticipated in the future.
    Keywords:  Drug delivery; Esophageal cancer; Imaging; Nanomedicine; Nanoparticle
    DOI:  https://doi.org/10.1016/j.semcancer.2022.01.007
  38. Biomed Res Int. 2022 ;2022 3692065
      Sumatriptan (ST) is a commonly prescribed drug for treating migraine. The efficiency of several routes of ST administration has been investigated. Recently, the intranasal route with different delivery systems has gained interest owing to its fast-acting and effectiveness. The present study is aimed at reviewing the available studies on novel delivery systems for intranasal ST administration. The oral route of ST administration is common but complicated with some problems. Gastroparesis in patients with migraine may reduce the absorption and effectiveness of ST upon oral use. Furthermore, the gastrointestinal (GI) system and hepatic metabolism can alter the pharmacokinetics and clinical effects of ST. The bioavailability of conventional nasal liquids is low due to the deposition of a large fraction of the delivered dose of a drug in the nasal cavity. Several delivery systems have been utilized in a wide range of preclinical and clinical studies to enhance the bioavailability of ST. The beneficial effects of the dry nasal powder of ST (AVP-825) have been proven in clinical studies. Moreover, other delivery systems based on microemulsions, microspheres, and nanoparticles have been introduced, and their higher bioavailability and efficacy were demonstrated in preclinical studies. Based on the extant findings, harnessing novel delivery systems can improve the bioavailability of ST and enhance its effectiveness against migraine attacks. However, further clinical studies are needed to approve the safety and efficacy of employing such systems in humans.
    DOI:  https://doi.org/10.1155/2022/3692065
  39. Biochem Pharmacol. 2022 Jan 19. pii: S0006-2952(22)00023-5. [Epub ahead of print] 114929
      Rheumatoid arthritis (RA) is a chronic autoimmune disorder and the treatment involves the use of traditional and biological disease modifying anti-rheumatic drugs (DMARDs). Recent studies have shown JAK/STAT signaling pathway as potential target for the treatment of RA. Novel JAK/STAT inhibitors viz tofacitinib and baricitinib have been recently approved by FDA for RA treatment and have attained substantial importance. However, the discernible risks of thromboembolism, gastrointestinal (GIT) perforations, hepatotoxicity and serious infections including tuberculosis, herpes zoster associated with their administration cannot be overlooked. Furthermore, these are highly expensive which limits their application for a broader use. These limitations provide the basis of exploring novel JAK/STAT inhibitors of natural origin with increased tolerability, safety and cost-effectiveness. In this review we confer an account of various natural compounds/phytochemicals that have proved to be beneficial in attenuating inflammation in RA via modulation of JAK/STAT signaling pathway. Some of these natural compounds including resveratrol have clearly indicated biochemical and clinically significant therapeutic effects in ameliorating RA both in vivo and in clinical settings. We further discuss the physicochemical challenges of poor solubility and absorption coupled with the use of natural JAK/STAT inhibitors. We thereafter discuss and summarize various drug delivery systems (DDS) to confront the physicochemical limitations of natural JAK/STAT inhibitors with the aim to enhance the therapeutic efficacy. Overall the review unveils the potential of natural JAK/STAT inhibitors as a cost-effective approach in ameliorating RA without incorporating the risks of adverse repercussions, thus setting the stage for clinical exploration of these compounds that may possibly complement the present RA therapy.
    Keywords:  DMARDs; Drug Delivery Systems; JAK/STAT pathway; Phytochemicals; Rheumatoid arthritis
    DOI:  https://doi.org/10.1016/j.bcp.2022.114929
  40. Chem Biol Interact. 2022 Jan 24. pii: S0009-2797(22)00037-0. [Epub ahead of print] 109832
      Piperlongumine is a herbal drug, with well-known anti-microbial and anti-neoplastic properties. The anti-carcinogenic potential of piperlongumine has been extensively explored for breast, colorectal, lungs, pancreatic, prostate, and oral carcinoma. However, a few numbers of studies are available on its bio-activity in osteosarcoma. Therefore, the present study aimed at exploring the therapeutic potential and possible mechanisms of action of piperlongumine in three human osteosarcoma cell lines in-vitro. The cytotoxicity of piperlongumine was determined by MTT assay, which shows dose and time-dependent inhibition of MG-63, 143B and KHOS/NP cells. Piperlongumine arrest the cells in G2/M phase of cell cycle and increases reactive oxygen species production, which possibly leads to lethal oxidative stress and apoptosis. Piperlongumine treatment significantly upregulated the expression of genes BAX, P21, P53, and SMAD4; while the BCL-2, SURVIVIN, TNFA, and NFKB genes expression was found down-regulated. Furthermore, piperlongumine exposure inhibited the migration of osteosarcoma cells as the expression of migration marker genes CDH2, CTNNB1, FN1, and TWIST were found to be down-regulated. The drug combination studies show the synergistic effect of piperlongumine with the conventional chemotherapeutic drug doxorubicin in osteosarcoma cells. Taken together, the above results suggest that PL displays anticancer properties against osteosarcoma and can be used as a therapeutic agent for osteosarcoma treatment in clinical settings.
    Keywords:  Doxorubicin; Herbal medicine; Natural product; Osteosarcoma; Piperlongumine; SMAD4
    DOI:  https://doi.org/10.1016/j.cbi.2022.109832
  41. Toxicol Appl Pharmacol. 2022 Jan 21. pii: S0041-008X(22)00034-5. [Epub ahead of print]437 115889
      Quercetin (Que) exhibits excellent biological activity; however, its clinical development is hindered owing to the poor water solubility. In this study, Que. was loaded on polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (PVCL-PVA-PEG, Soluplus) micelles through a thin-film hydration process, and their tumor angiogenesis inhibition ability was investigated. The particle size of Soluplus-Que micelles was 55.3 ± 1.8 nm, and the micelles stayed stability within 9 months. Soluplus-Que micelles can enhance the cell uptake of Que. and transport the micelles to intracellular lysosomes and mitochondria. The MTT assay results revealed that Soluplus-Que micelles enhanced the cytotoxicity of Que. on HUVEC cells. Furthermore, Soluplus-Que micelles inhibited migration and invasion of HUVEC cells, as well as inhibited the neovascularization of chick embryo allantoic membrane (CAM). The in vivo study revealed that Soluplus-Que micelles significantly inhibit the growth of H22 solid tumors, with low toxic side effects. Soluplus-Que inhibited the expression of CD31 (a marker of angiogenesis) and the PI3K/Akt/VEGF pathway in tumor tissues, indicating its potential to hold back tumor growth via the inhibition of angiogenesis. Our findings indicated that as a delivery system, Soluplus micelles demonstrate potential for the delivery of poorly soluble drugs for tumor treatment.
    Keywords:  Angiogenesis; Micelles; Quercetin; Soluplus
    DOI:  https://doi.org/10.1016/j.taap.2022.115889
  42. Crit Rev Food Sci Nutr. 2022 Jan 26. 1-30
      Identifying effective dietary supplements and medicinal herbs has attracted the attention of clinicians and researchers to complement the standard treatment in controlling diabetes mellitus. In the present overview, we aimed to collect studies with the highest level of evidence to shed light on detecting the most effective dietary supplements and medicinal herbs for controlling glycemic status. For the current overview, four electronic databases, including PubMed, Scopus, Web of Science, and Cochrane Library, were systematically searched from inception to 31 December 2020 and then updated until 1 October 2021 to obtain eligible meta-analyses on either dietary supplements or medicinal herbs and their effects on glycemic status. Fasting blood sugar (FBS) and Hemoglobin A1C (HbA1C) were considered as primary outcomes. Finally, ninety-one meta-analyses on dietary supplements (n = 55) and herbs (n = 36) were included. Evidence showed positive effects of chromium, zinc, propolis, aloe vera, milk thistle, fenugreek, cinnamon, ginger, and nettle on FBS and/or HbA1C. However, mostly the heterogeneity (I2) was high. Other supplements and herbs also showed no reduction in glucose levels or their effects were small. Although some dietary supplements and medicinal herbs showed a significant reduction in FBS and/or HbA1C, mostly their effects from the clinical point of view were not remarkable. In addition, due to high heterogeneity, publication bias, and a limited number of included studies in most cases further clinical trials are needed for making decision on anti-diabetic supplement efficacy.
    Keywords:  Supplements; complementary therapies; diabetes; herbal medicine; overview
    DOI:  https://doi.org/10.1080/10408398.2022.2028716
  43. J Genet Eng Biotechnol. 2022 Jan 26. 20(1): 14
      BACKGROUND: The marine environment hosts a wide variety of species that have evolved to live in harsh and challenging conditions. Marine organisms are the focus of interest due to their capacity to produce biotechnologically useful compounds. They are promising biocatalysts for new and sustainable industrial processes because of their resistance to temperature, pH, salt, and contaminants, representing an opportunity for several biotechnological applications. Encouraged by the extensive and richness of the marine environment, marine organisms' role in developing new therapeutic benefits is heading as an arable field. There is currently much interest in biologically active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Studies are focused on bacteria and fungi, isolated from sediments, seawater, fish, algae, and most marine invertebrates such as sponges, mollusks, tunicates, coelenterates, and crustaceans. In addition to marine macro-organisms, such as sponges, algae, or corals, marine bacteria and fungi have been shown to produce novel secondary metabolites (SMs) with specific and intricate chemical structures that may hold the key to the production of novel drugs or leads. The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae, including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity, and neuronal death inhibition.CONCLUSION: The application of marine-derived bioactive compounds has gained importance because of their therapeutic uses in several diseases. Marine natural products (MNPs) display various pharmaceutically significant bioactivities, including antibiotic, antiviral, neurodegenerative, anticancer, or anti-inflammatory properties. The present review focuses on the importance of critical marine bioactive compounds and their role in different diseases and highlights their possible contribution to humanity.
    Keywords:  Bioactive compounds; Marine natural products; Novel drugs; Secondary metabolites
    DOI:  https://doi.org/10.1186/s43141-021-00290-4
  44. JBMR Plus. 2022 Jan;6(1): e10572
      The relationship between the active form of vitamin D3 (1,25-dihydroxyvitamin D, 1,25(OH)2D) and reactive oxygen species (ROS), two integral signaling molecules of the cell, is poorly understood. This is striking, given that both factors are involved in cancer cell regulation and metabolism. Mitochondria (mt) dysfunction is one of the main drivers of cancer, producing more mitochondria, higher cellular energy, and ROS that can enhance oxidative stress and stress tolerance responses. To study the effects of 1,25(OH)2D on metabolic and mt dysfunction, we used the vitamin D receptor (VDR)-sensitive MG-63 osteosarcoma cell model. Using biochemical approaches, 1,25(OH)2D decreased mt ROS levels, membrane potential (ΔΨmt), biogenesis, and translation, while enforcing endoplasmic reticulum/mitohormetic stress adaptive responses. Using a mitochondria-focused transcriptomic approach, gene set enrichment and pathway analyses show that 1,25(OH)2D lowered mt fusion/fission and oxidative phosphorylation (OXPHOS). By contrast, mitophagy, ROS defense, and epigenetic gene regulation were enhanced after 1,25(OH)2D treatment, as well as key metabolic enzymes that regulate fluxes of substrates for cellular architecture and a shift toward non-oxidative energy metabolism. ATACseq revealed putative oxi-sensitive and tumor-suppressing transcription factors that may regulate important mt functional genes such as the mTORC1 inhibitor, DDIT4/REDD1. DDIT4/REDD1 was predominantly localized to the outer mt membrane in untreated MG-63 cells yet sequestered in the cytoplasm after 1,25(OH)2D and rotenone treatments, suggesting a level of control by membrane depolarization to facilitate its cytoplasmic mTORC1 inhibitory function. The results show that 1,25(OH)2D activates distinct adaptive metabolic responses involving mitochondria to regain redox balance and control the growth of osteosarcoma cells. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
    Keywords:  BONE; CANCER; CYP24A1; DDIT4; METABOLISM; MG‐63; MITOCHONDRIA; OSTEOBLAST; OSTEOSARCOMA; REDD1; ROS; SOD; SOD1; SOD2; STRESS; TUMOR; UNFOLDED PROTEIN RESPONSE; VDR; VITAMIN D; VITAMIN D DEFICIENCY; VITAMIN D RECEPTOR
    DOI:  https://doi.org/10.1002/jbm4.10572
  45. Biotechnol Appl Biochem. 2022 Jan 23.
      Alzheimer's disease (AD), an extensive age-associated neurodegenerative disorder. In spite of wide-ranging progress in understanding the AD pathology for the past 50 years, clinical trials based on the hypothesis of amyloid-beta (Aβ) have reserved worsening particularly at late-stage human trials. Consequently, very few old drugs are presently used for AD with inadequate clinical consequences and various side effects. We focus on widespread pharmacological and beneficial principles for existing as well as future drugs. Multi-targeting approaches by means of general antioxidant and anti-inflammatory mechanisms allied with particular receptor and/or enzyme-mediated actions in neuroprotection and neurodegeneration. The plant kingdom comprises a vast range of species with an incredible diversity of bioactive metabolites with diverse chemical scaffolds. In recent times, an increasing body of facts recommended the use of phytochemicals to decelerate AD's onset and progression. The definitive goal of AD investigation is to avert the onset of neurodegeneration; thereby it allows successful aging devoid of cognitive decline. At this point, we discussed the neurological protective role of natural products and naturally derived therapeutic agents for AD from various natural polyphenolic compounds and medicinal plants. In conclusion, medicinal plants act as a chief source of different bioactive constituents. This article is protected by copyright. All rights reserved.
    Keywords:  Alzheimer's disease; Beta-amyloid; Natural Products; Neurodegeneration; Phytochemical
    DOI:  https://doi.org/10.1002/bab.2317
  46. ACS Biomater Sci Eng. 2022 Jan 25.
      Oxidative stress is related to many diseases, but available clinical treatment methods are currently limited. Exploitation of enzyme-mimicking nanomaterials (nanozymes) is a promising way for scavenging reactive oxygen species (ROS) and treatment of ROS-related diseases. Herein, the catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) mimicking activities are expressed by MnO2 nanoparticles (MnO2-BSA NPs) coated with BSA. Effective •OH removal activity is also expressed by MnO2-BSA NPs at neutral pH. Apoptosis inhibition and ROS scavenging capabilities of MnO2-BSA NPs are evident on the H2O2-exposed BEAS-2B cells line. Western blot analysis indicates that MnO2-BSA NPs inhibit H2O2-induced apoptosis by mediating the expression of apoptosis-related proteins.
    Keywords:  MnO2; Nanozyme; antioxidant; cytoprotective effect
    DOI:  https://doi.org/10.1021/acsbiomaterials.1c01286
  47. Oxid Med Cell Longev. 2022 ;2022 9947191
      Cisplatin is widely used in the treatment of solid tumors, but its application is greatly limited due to its nephrotoxicity; thus, there is still no effective medicine for the treatment of cisplatin-induced acute kidney injury (Cis-AKI). We previously identified that polydatin (PD) exerts nephroprotective effects by antioxidative stress in AKI models. Recent evidence suggests that oxidative stress-induced molecular events overlap with the process of ferroptosis and that there are common molecular targets, such as glutathione (GSH) depletion and lipid peroxidation. Nevertheless, whether the nephroprotective effect of PD is related to anti-ferroptosis remains unclear. In this study, the inhibitory effect of PD on ferroptosis was observed in both cisplatin-treated HK-2 cells (20 μM) in vitro and a Cis-AKI mouse model (20 mg/kg, intraperitoneally) in vivo, characterized by the reversion of excessive intracellular free iron accumulation and reactive oxygen species (ROS) generation, a decrease in malondialdehyde (MDA) content and GSH depletion, and an increase in glutathione peroxidase-4 (GPx4) activity. Remarkably, PD dose-dependently alleviated cell death induced by the system Xc- inhibitor erastin (10 μM), and the effect of the 40 μM dose of PD was more obvious than that of ferrostatin-1 (1 μM) and deferoxamine (DFO, 100 μM), classical ferroptosis inhibitors. Our results provide insight into nephroprotection with PD in Cis-AKI by inhibiting ferroptosis via maintenance of the system Xc--GSH-GPx4 axis and iron metabolism.
    DOI:  https://doi.org/10.1155/2022/9947191
  48. Adv Sci (Weinh). 2022 Jan 23. e2103895
      Gallbladder cancer (GBC) is a rare but the most malignant type of biliary tract tumor. It is usually diagnosed at an advanced stage and conventional treatments are unsatisfactory. As a proteasome inhibitor, bortezomib (BTZ) exhibits excellent antitumor ability in GBC. However, the long-term treatment efficacy is limited by its resistance, poor stability, and high toxicity. Herein, BTZ-encapsulated pH-responsive copolymeric nanoparticles with estrone (ES-NP(BTZ; Ce6) ) for GBC-specific targeted therapy is reported. Due to the high estrogen receptor expression in GBC, ES-NP(BTZ; Ce6) can rapidly enter the cells and accumulate near the nucleus via ES-mediated endocytosis. Under acidic tumor microenvironment (TME) and 808 nm laser irradiation, BTZ is released and ROS is generated by Ce6 to destroy the "bounce-back" response pathway proteins, such as DDI2 and p97, which can effectively inhibit proteasomes and increase apoptosis. Compared to the traditional treatment using BTZ monotherapy, ES-NP(BTZ; Ce6) can significantly impede disease progression at lower BTZ concentrations and improve its resistance. Moreover, ES-NP(BTZ; Ce6) demonstrates similar antitumor abilities in patient-derived xenograft animal models and five other types of solid tumor cells, revealing its potential as a broad-spectrum antitumor formulation.
    Keywords:  drug delivery; gallbladder cancer; nanomedicine; proteasome inhibitor; targeted therapy
    DOI:  https://doi.org/10.1002/advs.202103895
  49. J Control Release. 2022 Jan 19. pii: S0168-3659(22)00035-9. [Epub ahead of print]343 78-88
      Tumor-associated macrophages (TAMs), which dampen the therapeutic efficacy of cancer immunotherapy, are the key players in the immunosuppressive tumor microenvironment (TME). Therefore, reprogramming TAMs into tumoricidal M1 macrophages possesses considerable potential as a novel immunotherapy. However, the low bioavailability of polarization agents and limited accumulation of TAMs restrict their anti-tumor efficacy. In this study, we developed a polymer-based hypoxia-responsive nanocomplex to target TAMs in hypoxia for enhanced cancer immunotherapy. We synthesized a hypoxia-cleavable polymer poly(ethylene glycol)-azo-poly(l-lysine) (PEG-azo-PLL) and formulated a nanocomplex by simple mixing PEG-azo-PLL and poly(I:C). By mimicking in vitro hypoxia conditions, PEG-azo-PLL/poly(I:C) complexes could transform the physicochemical properties to enhance the delivery efficiency of poly(I:C) to tumor hypoxia, where M2-like TAMs are accumulated. Furthermore, PEG-azo-PLL/poly(I:C) could successfully reduce the population of M2-like TAMs in hypoxic tumors and promoted infiltration of CD8+ T cells in vivo, resulting in the favorable conversion of immunosuppressive TME. Finally, PEG-azo-PLL/poly(I:C) could elicit a significant in vivo anti-tumor effect in B16F10-bearing mice in addition to a prolonged survival time, demonstrating that the hypoxia-responsive nanocomplex PEG-azo-PLL/poly(I:C) is a promising approach for TAM reprogramming immunotherapy for solid tumors.
    Keywords:  Cancer immunotherapy; Hypoxia; Poly(I:C); Tumor-associated macrophages
    DOI:  https://doi.org/10.1016/j.jconrel.2022.01.021
  50. Acc Chem Res. 2022 Jan 25.
      ConspectusCancer stem cells (CSCs), also known as tumor initiating cells or tumor repopulating cells, which comprise only a small fraction of tumor, have received tremendous attention during the past two decades, as they are considered as the ringleader for initiation and progression of tumors, therapy resistance, metastasis, and recurrence in the clinic. Hence, eradicating CSCs is critical for successful cancer treatment. To that end, various CSC-targeting therapeutic agents have been pursued. However, these CSC-specific drugs are ineffective toward bulk cancer cells. Furthermore, these anti-CSC drugs not only eradicate CSCs but also affect conventional stem cells in normal organs or tissues. By virtue of the enhanced permeability and retention (EPR) effect, nanomaterial drug delivery systems (NDDSs) passively accumulate in tumor tissues, thereby alleviating severe side effects toward normal viscera. NDDSs can be further functionalized with CSC-specific binding molecules to promote targeted drug delivery toward CSCs. Moreover, NDDSs have unique advantages in encapsulating CSC-specific drugs and cytotoxic agents, realizing synchronized killing of CSCs and bulk cancer cells both temporally and spatially. For these reasons, leveraging nanotherapeutic strategies to target CSCs has gained tremendous attention recently.Some ten years ago, we summarized five basic features of efficient nanotherapeutics (the five features principle), which consist of long circulation, tumor accumulation, deep penetration, cellular internalization, and drug release. Based on this design rationale, we constructed several NDDSs, including nanogels with adaptive hydrophobicity, CSC-derived microparticles with tailored softness, and tumor exosome sheathed porous silicon biomimetic nanoparticles, for targeted drug delivery to tumor. To our astonishment, these NDDSs that possess the five basic features achieve decent drug delivery efficiency toward not only bulk tumor cells but more importantly CSCs. Consequently, such nanotherapeutics as-designed based on the five features principle are potent in eradicating CSCs, even with only cytotoxic drugs, for instance, doxorubicin. Furthermore, commercialized nanomedicines, such as Doxil and Abraxane, can be endowed with these five basic features by hyperbaric oxygen therapy and therefore achieve outstanding drug delivery efficiency, potent CSC elimination, and efficient cancer therapy. These studies suggest that intractable CSCs can be tackled with a material-based approach, highlight the critical role of the five features principle in designing effective nanotherapeutics, and pinpoint the significance of drug delivery efficiency in eliminating CSCs and bulk cancer cells.
    DOI:  https://doi.org/10.1021/acs.accounts.1c00635
  51. Carcinogenesis. 2022 Jan 27. pii: bgac009. [Epub ahead of print]
      Breast cancer has strong developmental origins and maternal nutrition composition may influence later-life breast cancer risk in the offspring. Our study focused on a bioactive dietary component, genistein (GE) enriched in soybean products, to investigate specific timing of maternal GE exposure that may influence preventive efficacy of GE on offspring breast cancer later in life, and to explore the potential epigenetic mechanisms. Our results indicate a time-dependent effect of maternal GE exposure on early-life breast cancer development in offspring mice. Through integrated transcriptome and methylome analyses, we identified several candidate genes showing significantly differential gene expression and DNA methylation changes. We further found maternal long-term GE treatment can induce inherited epigenetic landmarks in a candidate tumor suppressor gene, Trp63, resulting in transcriptional activation of Trp63 and induction of the downstream target genes. Our results suggest that maternal long-term exposure to soybean GE may influence early-life epigenetic reprogramming processes, which may contribute to its temporal preventive effects on breast cancer in the offspring. This study provides important mechanistic insights into an appropriate maternal administration of soybean products on prevention of breast cancer later in offspring life.
    Keywords:  Breast cancer; epigenetic; maternal intervention; prevention; soybean genistein
    DOI:  https://doi.org/10.1093/carcin/bgac009
  52. Food Funct. 2022 Jan 26.
      Recently, the numbers of studies on natural products have considerably increased owing to their exceptional biological activities and health benefits. Their pharmacological attributes have played an immense role in detecting natural and safe alternative therapeutics, consequently extending their industrial applications. In this line, ginger (Zingiber officinale) has been gaining wide attention owing to its bioactive compounds, such as phenolic and terpene compounds. Ginger has a great pharmacological and biological potential in the prevention and treatment of various diseases, namely colds, nausea, arthritis, migraines and hypertension. However, these bioactive compounds are unstable and susceptible to degradation, volatilization and oxidation during extraction and processing, mainly owing to their exposure to environments with adverse conditions, such as high temperature, the presence of O2 and light. In this sense, this current review covers a wide range of topics, starting from the chemical profile and biological properties of ginger bioactive compounds (GBCs), their clinical effectiveness for the treatment of diseases and the application of different encapsulation methods (molecular inclusion, spray drying, complex coacervation, ionic strength and nanoemulsions) to protect and improve their application in food products. This work summarizes the fundamental principles of, recent progress in and effectiveness of different methods regarding the physicochemical, structural and functional properties of encapsulated GBCs. The potential use of encapsulated GBCs as a promising active ingredient to be applied in different food products is discussed in detail.
    DOI:  https://doi.org/10.1039/d1fo02998c
  53. Apoptosis. 2022 Jan 28.
      Gastric cancer is regarded as the fifth most common cancer globally but the third most common cancer death. Although systemic chemotherapy is the primary treatment for advanced gastric cancer patients, the outcome of chemotherapy is unsatisfactory. Novel therapeutic strategies and potential alternative treatments are therefore needed to overcome the impact of this disease. At a cellular level, mitochondria play an important role in cell survival and apoptosis. A growing body of studies have shown that mitochondria play a central role in the regulation of cellular function, metabolism, and cell death during carcinogenesis. Interestingly, the impact of mitochondrial dynamics, including fission/fusion and mitophagy, on carcinogenesis and cancer progression has also been reported, suggesting the potential targeting of mitochondrial dynamics for the treatment of cancer. This review not only comprehensively summarizes the homeostasis of gastric cancer cells, but the potential therapeutic interventions for the targeting of mitochondria for gastric cancer therapy are also highlighted and discussed.
    Keywords:  Apoptosis; Cell death; Gastric cancer; Mitochondria; ROS
    DOI:  https://doi.org/10.1007/s10495-022-01709-0
  54. J Am Chem Soc. 2022 Jan 24.
      Owing to the specific and high binding affinity of aptamers to their targets, aptamer-drug conjugates (ApDCs) have emerged as a promising drug delivery system for targeted cancer therapy. However, in a conventional ApDC, the aptamer segment usually just serves as a targeting moiety, and only a limited number of drug molecules are sequentially conjugated to the oligonucleotide, giving a relatively low drug loading capacity. To address this challenge, herein we employ four clinically approved nucleoside analogues, including clofarabine (Clo), ara-guanosine (AraG), gemcitabine (Ge), and floxuridine (FdU), to replace all natural nucleosides in aptamer sequences, generating a series of whole drug-constituted DNA-like oligomers that are termed drugtamers. Similar to their parent aptamers, the obtained drugtamers maintain the targeting capability and can specifically bind to the target receptors overexpressed on the cancer cell surface. With 100% drug loading ratio, active targeting capability, and enzyme-mediated release of active therapeutics, our drugtamers can strongly induce the apoptosis of cancer cells and inhibit the tumor progression, which enables a new potential for a better targeted cancer therapy.
    DOI:  https://doi.org/10.1021/jacs.1c09574
  55. Biofactors. 2022 Jan 26.
      Although the chemotherapeutic drug, doxorubicin, is commonly used to treat various malignant tumors, its clinical use is restricted because of its toxicity especially cardiotoxicity. The use of curcumin may alleviate some of the doxorubicin-induced cardiotoxic effects. Especially, using the nano-formulation of curcumin can overcome the poor bioavailability of curcumin and enhance its physicochemical properties regarding its efficacy. In this study, we systematically reviewed the potential cardioprotective effects of nano-curcumin against the doxorubicin-induced cardiotoxicity. A systematic search was accomplished based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for the identification of all relevant articles on "the role of nano-curcumin on doxorubicin-induced cardiotoxicity" in the electronic databases of Scopus, PubMed, and Web of Science up to July 2021. One hundred and sixty-nine articles were screened following a predefined set of inclusion and exclusion criteria. Ten eligible scientific papers were finally included in the present systematic review. The administration of doxorubicin reduced the body and heart weights of mice/rats compared to the control groups. In contrast, the combined treatment of doxorubicin and nano-curcumin increased the body and heart weights of animals compared with the doxorubicin-treated groups alone. Furthermore, doxorubicin could significantly induce the biochemical and histological changes in the cardiac tissue; however, coadministration of nano-curcumin formulation demonstrated a pattern opposite to the doxorubicin-induced changes. The coadministration of nano-curcumin alleviates the doxorubicin-induced cardiotoxicity through various mechanisms including antioxidant, anti-inflammatory, and antiapoptotic effects. Also, the cardioprotective effect of nano-curcumin formulation against doxorubicin-induced cardiotoxicity was higher than free curcumin.
    Keywords:  cardioprotection; cardiotoxicity; curcumin; doxorubicin; nanoparticle; neoplasms
    DOI:  https://doi.org/10.1002/biof.1823
  56. Clin Transl Oncol. 2022 Jan 25.
      Drug resistance is the drug-effectiveness reduction in treatment and is a serious problem in oncology and infections. In oncology, drug resistance is a complicated process resulting from enhancing the function of a pump that transports drugs out of tumor cells, or acquiring mutations in drug target. Surprisingly, most drugs are very effective in the early stages, but the response to the drug wears off over time and resistance eventually develops. Drug resistance is caused by genetic and epigenetic changes that affect cancer cells and the tumor environment. The study of inherited changes in the phenotype without changes in the DNA sequence is called epigenetics. Because of reversible changes in epigenetics, they are an attractive target for therapy. Some of these epigenetic drugs are effective in treating cancers like acute myeloid leukemia (AML), which is characterized by the accumulation and proliferation of immature hematopoietic cells in the blood and bone marrow. In this article, we outlined the various contributing factors involved in resistance or sensitivity to epigenetic drugs in the treatment of AML.
    Keywords:  Acute myeloid leukemia; Chromatin modification; Drug resistance; Epigenetic drugs; Epigenetic therapy
    DOI:  https://doi.org/10.1007/s12094-022-02776-0
  57. BMC Complement Med Ther. 2022 Jan 22. 22(1): 19
      BACKGROUND: Vitamin D has an established role in female reproduction. There is also evidence for an association between vitamin D levels and menstrual problems such as premenstrual syndrome (PMS) and dysmenorrhea. Curcumin, is a bioactive polyphenol constituent of turmeric, that can potentially interact with vitamin D receptors and its molecular targets. This study evaluated the effects of curcumin on vitamin D levels in young women with PMS and dysmenorrhea.METHODS: In this randomized, triple-blind, placebo-controlled trial, women with PMS and dysmenorrhea were divided randomly into experimental and control groups to receive one capsule (500 mg of curcuminoid+ 5 mg piperine, or placebo) daily, from approximately 7 days before until 3 days after menstruation for three consecutive menstrual cycles. Serum vitamin D levels, renal function, and liver enzymes were also measured before and after intervention.
    RESULTS: A total of 76 subjects (38 in each group) were recruited into the trial. Curcumin significantly increased the median (IQR) serum levels of vitamin D [from 12.8 ng/ml (7.0-24.6) to 16.2 ng/ml (6.4-28.8); P = 0.045], compared with placebo [from 18.6 ng/ml (2.2-26.8) to 21.3 ng/ml (5.2-27.1); P = 0.17]. Serum levels of aspartate aminotransferase and direct bilirubin were reduced by the end of trial in the curcumin group (p < 0.05), but did not change significantly in the control group (p > 0.05). Finally, no significant differences in levels of fasting blood glucose were detected between curcumin and placebo groups.
    CONCLUSION: Curcumin supplementation in women with PMS and dysmenorrhea led to a significant improvement of vitamin D, liver function enzyme test, but did not affect blood glucose.
    TRIAL REGISTRATION: The trial was registered on Iranian Registry of Clinical Trials registry (Trial ID: IRCT20191112045424N1 on 23 January 2020; available at https://www.irct.ir ).
    Keywords:  Aspartate aminotransferase; Bilirubin; Menstruation; Triglycerides; Turmeric
    DOI:  https://doi.org/10.1186/s12906-022-03515-2
  58. Biomater Sci. 2022 Jan 27.
      Camptothecin (CPT) is a potent broad-spectrum antitumor agent with efficient therapeutic effect for various cancers. However, its application in glioma therapy has been impeded by the tumor immunosuppressive environment and blood-brain barrier (BBB)-associated drug delivery challenges. Herein, neurotransmitter analogs-modified liposomes (NTs-LIP) were prepared by doping lipidized tryptamine (Tryp) to co-deliver CPT and curcumin (CUR) for improved chemo-immunotherapy in glioma. The introduction of Tryp promotes the delivery efficiency of CPT and CUR across the BBB. CPT inhibits cell proliferation after cellular uptake of NTs-LIP, the combination of which with CUR downregulates the elevated expression of the programmed cell death 1 ligand 1 (PD-L1) caused by CPT to prevent the inactivation of T-cells and synergistically enhance chemo-immunotherapy efficacy. Furthermore, both Tryp and CUR interfere with the indoleamine 2,3-dioxygenase (IDO) pathway to reduce regulatory T cell (Treg)-mediated immunosuppression, exhibiting the potential to combine with PD-L1 inhibition for synergistic antitumor immunity. Taken together, this platform contributes towards targeted delivery and alleviation of the immunosuppressive environment in glioma therapy.
    DOI:  https://doi.org/10.1039/d1bm01987b
  59. Front Immunol. 2021 ;12 819405
      Breast cancer (BC) is the most common malignancy among females. Chemotherapy drugs remain the cornerstone of treatment of BC and undergo significant shifts over the past 100 years. The advent of immunotherapy presents promising opportunities and constitutes a significant complementary to existing therapeutic strategies for BC. Chemotherapy as a cytotoxic treatment that targets proliferation malignant cells has recently been shown as an effective immune-stimulus in multiple ways. Chemotherapeutic drugs can cause the release of damage-associated molecular patterns (DAMPs) from dying tumor cells, which result in long-lasting antitumor immunity by the key process of immunogenic cell death (ICD). Furthermore, Off-target effects of chemotherapy on immune cell subsets mainly involve activation of immune effector cells including natural killer (NK) cells, dendritic cells (DCs), and cytotoxic T cells, and depletion of immunosuppressive cells including Treg cells, M2 macrophages and myeloid-derived suppressor cells (MDSCs). Current mini-review summarized recent large clinical trials regarding the combination of chemotherapy and immunotherapy in BC and addressed the molecular mechanisms of immunostimulatory properties of chemotherapy in BC. The purpose of our work was to explore the immune-stimulating effects of chemotherapy at the molecular level based on the evidence from clinical trials, which might be a rationale for combinations of chemotherapy and immunotherapy in BC.
    Keywords:  breast cancer; chemotherapy; clinic trial; immunogenic modulation; immunotherapy
    DOI:  https://doi.org/10.3389/fimmu.2021.819405
  60. Oncotarget. 2022 ;13 156-172
      Photodynamic therapy (PDT) is a promising primary treatment option for colorectal cancer (CRC), however CRC is accelerated by resilient CRC stem-like cells, which decrease its efficacy. In recent years, researchers have shown an emerging interest in the anticancer stem cell effects of cannabidiol (CBD). This study developed a targeted nanobioconjugate for specific ZnPcS4 photosensitizer intracellular accumulation within in vitro cultured human CRC cells (CaCo-2) for enhanced PDT primary treatment, as well as limited its secondary spread by combining this treatment with CBD. The final nanobioconjugate (FNBC) was successfully synthesized and characterized using various methods. The cytotoxicity of the FNBC and CBD were tested on CRC cells using laser irradiation at 673 nm with a fluency of 10 J/cm2. 24 h post treatment, morphological changes were assessed via microscopy, cell viability was measured using Annexin V-FITC and cellular nuclear DNA was visualized under fluorescent microscopy, following Hoechst staining. FNBC and CBD combinative treatment induced the most significant photodamage, leaving a staggering 6%*** viable cells. Overall, through active targeting of CRC cells using the FNBC, the enhanced PDT primary treatment of CRC was achieved, and the combinative treatment with CBD noted significant limitations on its secondary spread.
    Keywords:  cannabidiol; colorectal cancer; nanoparticles; photodynamic therapy; photosensitizer
    DOI:  https://doi.org/10.18632/oncotarget.28171
  61. Front Pharmacol. 2021 ;12 772418
      Piperine and piperidine are the two major alkaloids extracted from black pepper (Piper nigrum); piperidine is a heterocyclic moiety that has the molecular formula (CH2)5NH. Over the years, many therapeutic properties including anticancer potential of these two compounds have been observed. Piperine has therapeutic potential against cancers such as breast cancer, ovarian cancer, gastric cancer, gliomal cancer, lung cancer, oral squamous, chronic pancreatitis, prostate cancer, rectal cancer, cervical cancer, and leukemia. Whereas, piperidine acts as a potential clinical agent against cancers, such as breast cancer, prostate cancer, colon cancer, lung cancer, and ovarian cancer, when treated alone or in combination with some novel drugs. Several crucial signalling pathways essential for the establishment of cancers such as STAT-3, NF-κB, PI3k/Aκt, JNK/p38-MAPK, TGF-ß/SMAD, Smac/DIABLO, p-IκB etc., are regulated by these two phytochemicals. Both of these phytochemicals lead to inhibition of cell migration and help in cell cycle arrest to inhibit survivability of cancer cells. The current review highlights the pharmaceutical relevance of both piperine and piperidine against different types of cancers.
    Keywords:  anti-breast cancer; anti-gastric cancer; anti-ovarian effect; anti-prostate cancer; mechanism of action; piper; piperidine; piperine
    DOI:  https://doi.org/10.3389/fphar.2021.772418
  62. Acta Biomed. 2022 01 19. 92(6): e2021307
      In recent years, scientific research has shown that the incidence of various diseases, including some cancers, is relatively low in the Mediterranean Countries compared to that of other European countries or North America. This support the hypothesis that the Mediterranean diet, rich in bioactive food components, including methyl group donors, polyphenols, and fatty acids has efficacy in terms of prevention. Few studies evaluated the efficacy of Med Diet on colon cancer however they all support the beneficial effects of this Diet in preventing cancer.
    DOI:  https://doi.org/10.23750/abm.v92i6.10390
  63. Carbohydr Polym. 2022 Apr 01. pii: S0144-8617(21)01432-6. [Epub ahead of print]281 119045
      Biomaterials are considered a substantial building block for tissue engineering, regenerative medicine, and drug delivery. Despite using both organic and inorganic biomaterials in these fields, polymeric biomaterials are the most promising candidates because of their versatility in their characteristics (i.e., physical, chemical, and biological). Mainly, naturally-derived polymers are of great interest due to their inherent bioactivity. Derived from red seaweeds, carrageenan (CG) is a naturally-occurring polysaccharide that has shown promise as a biopolymer for various biomedical applications. CG possesses unique characteristics, including antiviral, immunomodulatory, anticoagulant, antioxidant, and anticancer properties, making it an appealing candidate for tissue engineering and drug delivery research. This review summarizes the versatile properties of CG and the chemical modifications applied to it. In addition, it highlights some of the most promising research that takes advantage of CG to formulate and fabricate scaffolds and/or drug delivery systems with high potential for tissue repair and disease curing.
    Keywords:  3D printing; Carrageenan; Drug delivery; Hydrogel; Nanofibers; Tissue engineering
    DOI:  https://doi.org/10.1016/j.carbpol.2021.119045
  64. Phytother Res. 2022 Jan 27.
      Medicinal plants represent rich sources of traditional medicines and numerous currently used medicines are either directly or indirectly derived from plants. Verbascum thapsus L. (great mullein or common mullein), a medicinal herb indigenous to northern Africa, western and central Asia, and Europe, has been brought to the Americas and Australia. It has been used as a medicine for lung, skin and throat disorders and has a long history of therapeutic importance, particularly as an astringent and calming agent. Presently, the dried leaves, flowers, various plant extracts and flower oil are used in several formulations within Indian traditional medicine. An extract taken from the roots is useful in minimizing toothache, and it also relieves stiffness and seizures. V. thapsus contains a wide variety of phytoconstituents, such as flavonoids, iridoid, phenylethanoid and phenylpropanoid glycosides, saponins, as well as vitamin C and minerals. The most valuable constituents are coumarin and hesperidin, which possess healing properties. Emerging literature based on experimental studies on V. thapsus demonstrates various biological and pharmacological properties, including antiviral, antioxidant, analgesic, sedative, anti-inflammatory, hypnotic, antibacterial, antifungal, as well as anticancer activities. The present review provides an updated, comprehensive, and critical evaluation of various health-promoting and disease-mitigating properties of V. thapsus.
    Keywords:  Verbascum thapsus; formulation; pharmacological activities; phytoconstituents; traditional uses
    DOI:  https://doi.org/10.1002/ptr.7393
  65. Curr Pharm Des. 2022 Jan 28.
      Gelatin is obtained via partial denaturation of collagen and is extensively used in various industries. The majority of gelatin utilized globally is derived from a mammalian source. Several health and religious concerns associated with porcine/bovine gelatin were reported. Therefore, gelatin from a marine source is widely being investigated for its efficiency and utilization in a variety of applications as a potential substitute for porcine/bovine gelatin. Although fish gelatin is less durable and possesses lower melting and gelling temperatures compared to mammal-derived gelatin, various modifications are being reported to promote its rheological and functional properties to be efficiently employed. The present review describes in detail the current innovative applications of fish gelatin involving the food industry, drug delivery and possible therapeutic applications. Gelatin bioactive molecules may be utilized as carriers for drug delivery. Due to its versatility, gelatin can be used in different carrier systems, such as microparticles, nanoparticles, fibers and hydrogels. The present review also provides a perspective on the other potential pharmaceutical applications of fish gelatin, such as tissue regeneration, antioxidant supplementation, antihypertensive and anticancer treatments.
    Keywords:  Fish gelatin; biomedical applications; drug delivery; food formulation; tissue engineering; wound healing
    DOI:  https://doi.org/10.2174/1381612828666220128103725
  66. BMC Cancer. 2022 Jan 25. 22(1): 105
      BACKGROUND: Nutrient acquisition and metabolism pathways are altered in cancer cells to meet bioenergetic and biosynthetic demands. A major regulator of cellular metabolism and energy homeostasis, in normal and cancer cells, is AMP-activated protein kinase (AMPK). AMPK influences cell growth via its modulation of the mechanistic target of Rapamycin (mTOR) pathway, specifically, by inhibiting mTOR complex mTORC1, which facilitates cell proliferation, and by activating mTORC2 and cell survival. Given its conflicting roles, the effects of AMPK activation in cancer can be counter intuitive. Prior to the establishment of cancer, AMPK acts as a tumor suppressor. However, following the onset of cancer, AMPK has been shown to either suppress or promote cancer, depending on cell type or state.METHODS: To unravel the controversial roles of AMPK in cancer, we developed a computational model to simulate the effects of pharmacological maneuvers that target key metabolic signalling nodes, with a specific focus on AMPK, mTORC, and their modulators. Specifically, we constructed an ordinary differential equation-based mechanistic model of AMPK-mTORC signaling, and parametrized the model based on existing experimental data.
    RESULTS: Model simulations were conducted to yield the following predictions: (i) increasing AMPK activity has opposite effects on mTORC depending on the nutrient availability; (ii) indirect inhibition of AMPK activity through inhibition of sirtuin 1 (SIRT1) only has an effect on mTORC activity under conditions of low nutrient availability; (iii) the balance between cell proliferation and survival exhibits an intricate dependence on DEP domain-containing mTOR-interacting protein (DEPTOR) abundance and AMPK activity; (iv) simultaneous direct inhibition of mTORC2 and activation of AMPK is a potential strategy for suppressing both cell survival and proliferation.
    CONCLUSIONS: Taken together, model simulations clarify the competing effects and the roles of key metabolic signalling pathways in tumorigenesis, which may yield insights on innovative therapeutic strategies.
    Keywords:  AMPK; Cancer; Dynamical system; Metabolism; mTORC
    DOI:  https://doi.org/10.1186/s12885-022-09211-1
  67. Front Pharmacol. 2021 ;12 757761
      Drug delivery using oral route is the most popular, convenient, safest and least expensive approach. It includes oral transmucosal delivery of bioactive compounds as the mucosal cavity offers an intriguing approach for systemic drug distribution. Owing to the dense vascular architecture and high blood flow, oral mucosal layers are easily permeable and can be an ideal site for drug administration. Recently, the transmucosal route is being investigated for other therapeutic candidates such as vaccines for their efficient delivery. Vaccines have the potential to trigger immune reactions and can act as both prophylactic and therapeutic conduit to a variety of diseases. Administration of vaccines using transmucosal route offers multiple advantages, the most important one being the needle-free (non-invasive) delivery. Development of needle-free devices are the most recent and pioneering breakthrough in the delivery of drugs and vaccines, enabling patients to avoid needles, reducing anxiety, pain and fear as well as improving compliance. Oral, nasal and aerosol vaccination is a novel immunization approach that utilizes a nanocarrier to administer the vaccine. Nanocarriers improve the bioavailability and serve as adjuvants to elicit a stronger immune response, resulting in increased effectiveness of vaccination. Drugs and vaccines with lower penetration abilities can also be delivered transmucosally while maintaining their biological function. The development of micro/nanocarriers for transmucosal delivery of macromolecules, vaccines and other substances is currently drawing much attention and a number of studies were performed recently. This comprehensive review is aimed to summarize the most recent investigations on needle-free and non-invasive approaches for the delivery of vaccines using oral transmucosal route, their strengths and associated challenges. The oral transmucosal vaccine delivery by nanocarriers is the most upcoming advancement in efficient vaccine delivery and this review would help further research and trials in this field.
    Keywords:  drug delivery; nanocarrier; needle-free; non-invasive; transmucosal; vaccine
    DOI:  https://doi.org/10.3389/fphar.2021.757761
  68. J Mater Chem B. 2022 Jan 27.
      Mesoporous silica nanoparticles (MSNPs) have attracted much attention in many biomedical applications. One of the fields in which smart functional nanosystems have found wide application is cancer treatment. Here, we present new silica nanoparticle-based systems which have been explored as efficient vehicles to transport and deliver photosensitizers (PSs) into tumor tissues during photodynamic therapy (PDT). In this work, we report the preparation, characterization, and in vitro studies of distinct shaped MSNPs grafted with S-glycoside porphyrins (Pors). The ensuing nanomaterials were fully characterized, and their properties as third-generation PSs for PDT against two bladder cancer cell lines, HT-1376 and UM-UC-3, were examined. The best uptake results were obtained for MSNP-PS2, while MSNP-PS1 showed the lowest cellular uptake among the nanocarriers tested, but revealed the best phototoxicity in both cancer cells. Overall, the phototoxicity was higher with MSNPs than with mesoporous silica nanorods (MSNRs) and higher uptake and phototoxicity were consistently observed in UM-UC-3 rather than in HT-1376 cancer cells.
    DOI:  https://doi.org/10.1039/d1tb02299g
  69. Pharmacol Ther. 2022 Jan 22. pii: S0163-7258(22)00011-0. [Epub ahead of print] 108117
      Hepatic fibrosis is a key pathological process of chronic liver diseases, caused by alcohol, toxic and aberrant energy metabolism. It progresses to cirrhosis or even hepatic carcinoma without effective treatment. Studies have shown that autophagy has important regulatory effects on hepatic stellate cells (HSCs) energy metabolism, and then affect the activation state of HSCs. Autophagy maintains hepatic energy homeostasis, and the dysregulation of autophagy can lead to the activation of HSCs and the occurrence and development of hepatic fibrosis. It is necessary to explore the mechanism of autophagy in energy metabolism-related hepatic fibrosis. Herein, the current study summarizes the regulating mechanisms of autophagy through different targets and signal pathways in energy metabolism-related hepatic fibrosis, and discusses the regulatory effect of autophagy by natural plant-derived, endogenous and synthetic compounds for the treatment of hepatic fibrosis. A better comprehension of autophagy in hepatic stellate cells energy metabolism-related hepatic fibrosis may provide effective intervention of hepatic fibrosis, explore the potential clinical strategies and promote the drug treatment of hepatic fibrosis.
    Keywords:  Autophagy; Autophagy regulation; Energy metabolism; Hepatic fibrosis; Therapy targets
    DOI:  https://doi.org/10.1016/j.pharmthera.2022.108117
  70. Nano Lett. 2022 Jan 24.
      The current state of antitumor nanomedicines is severely restricted by poor penetration in solid tumors. It is indicated that extracellular vesicles (EVs) secreted by tumor cells can mediate the intercellular transport of antitumor drug molecules in the tumor microenvironment. However, the inefficient generation of EVs inhibits the application of this approach. Herein, we construct an EV-mediated self-propelled liposome containing monensin as the EV secretion stimulant and photosensitizer pyropheophorbide-a (PPa) as a therapeutic agent. Monensin and PPa are first transferred to the tumor plasma membrane with the help of membrane fusogenic liposomes. By hitchhiking EVs secreted by the outer tumor cells, both drugs are layer-by-layer transferred into the deep region of a solid tumor. Particularly, monensin, serving as a sustainable booster, significantly amplifies the EV-mediated PPa penetration by stimulating EV production. Our results show that this endogenous EV-driven nanoplatform leads to deep tumor penetration and enhanced phototherapeutic efficacy.
    Keywords:  extracellular vesicle; membrane fusogenic liposomes; monensin; photodynamic therapy; tumor penetration
    DOI:  https://doi.org/10.1021/acs.nanolett.1c04962
  71. Evid Based Complement Alternat Med. 2022 ;2022 4586318
      As Allium cepa is one of the most important condiment plants grown and consumed all over the world, various therapeutic and pharmacological effects of A. cepa were reviewed. Onion (Allium cepa) is a high dietary fiber-rich perennial herb that is placed under the family Amaryllidaceae. It contains high concentration of folic acid, vitamin B6, magnesium, calcium, potassium, and phosphorus as well as vitamins and minerals. It is widely used as an antimicrobial agent, but it showed anticancer, antidiabetic, antioxidant, antiplatelet, antihypertensive, and antidepressant effects and neuroprotective, anti-inflammatory, and antiparasitic effects and so on. It is said to have beneficial effects on the digestive, circulatory, and respiratory systems, as well as on the immune system. This review article was devoted to discussing many health benefits and traditional uses of onions in pharmacological perspectives, as well as the safety/toxicological profile. If more detailed research on this perennial herb is conducted, it will open the door to an infinite number of possibilities.
    DOI:  https://doi.org/10.1155/2022/4586318
  72. Curr Drug Targets. 2022 Jan 28.
      BACKGROUND: Nanoparticles play a very important role in our daily lives and have a wide range of applications in agriculture and the field of biology such as antioxidants and antimicrobial compounds. Among them are gold nanoparticles (AuNPs) that are highly complex and widely used. In recent years gold nanoparticles have attracted much attention because of their optical properties, electronic, physicochemical and surface Plasmon resonance (SPR). Gold plated nanoparticles, similar to metal nanoparticles, have many unusual chemical and physical properties due to the effects of their quantum size and location, compared to other iron or metal atoms. Gold nanoparticles can be used in pharmaceutical products such as antimicrobial and anti-biofilm agents, targeted delivery of anti-cancer drugs, biosensors, biocatalysis, bioremediation modification of toxic chemicals exposing the soil and atmosphere, dye reduction etc. Yet such methods are expensive and out of harmony with nature. In that account the microbes mediated synthesis of gold nanoparticles changed rapidly recently when pure microbes are ac-friendly, non-toxic and bio compatible as physiological and chemical methods. This document aims to review the progress made in recent years with the fusion of gold nanoparticles. Microbial source includes bacteria, algae fungi. These works motivate the people for how to apply and synthesize of gold nanoparticles. This review also focuses on the process of classification of gold nanoparticles, structures and their use in the development of various requirements.OBJECTIVE: The main goal is to study about the gold nanoparticles and their application in future.
    METHODS: We study different research paper, review paper from "Google Scholar", "NCBI", "PubMed", "Science Direct" and then we making our review paper.
    CONCLUSION: Metal nanoparticles are suitable for many emerging technologies. Understanding the microorganisms found in nature because the fusion of gold nanoparticles is required.
    Keywords:  Gold nanoparticles (AuNPs); Microbial synthesis; Surface Plasmon resonance (SPR); anti-biofilm; eco-friendly.
    DOI:  https://doi.org/10.2174/1389450123666220128152408
  73. Sci Rep. 2022 Jan 24. 12(1): 1230
      Human gingival fibroblasts (HGnFs) maintain periodontal tissue homeostasis through active proliferation and migration. Clinically, it is considered that the wound-healing ability of the gingival tissue is maintained even in environments with insufficient supply of nutrients, such as glucose, immediately after periodontal surgery. However, the effects of such glucose-deficient environments on HGnFs remain unclear. This study aimed to investigate the effects of low-glucose environment on HGnFs homeostasis. We evaluated gingival wound healing by examining cell proliferation and migration and collagen synthesis in HGnFs cultured in 100, 50, 25, and 0 mg/dL glucose in vitro. The cellular stress levels were determined by measuring the lactate dehydrogenase (LDH) and reactive oxygen species (ROS) levels. The glucose metabolism of HGnFs in the low-glucose concentrations was studied by measuring glucose transporter type 1 (GLUT1) mRNA expression, glucose uptake assays, lactate and ATP productions. Molecular effects were examined with a focus on the LKB1-AMPK signaling pathway. Autophagy activity in glucose-deprived HGnFs was evaluated by measuring the levels of autophagy-related proteins. Low glucose levels increased cellular stress levels, autophagy activity, and enhanced glucose metabolism through the LKB1-AMPK signaling pathway, providing more ATPs to promote wound healing. Our results regarding glucose transfer suggest the rapid healing of gingival wounds.
    DOI:  https://doi.org/10.1038/s41598-022-05398-2
  74. Recent Adv Inflamm Allergy Drug Discov. 2022 Jan 26.
      PURPOSE: To prepare solid lipid nanopaticles (SLNs) of Ketoprofen (KP) using microwave method. Ketoprofen (KP) is 2-(3-benzolphenyl) propionic acid with anti-inflammatory, analgesic and antipyretic property. The drug has short half-life of 120 mins. It belongs to BCS Class II drug. Gastric irritation is a major limitation for delivery because of acidic nature of the drug. Development of solid lipid nanoparticles with its transdermal drug delivery was the aim of present work.METHODS: Microwave-assisted microemulsion technique was used for the development of solid lipid nanoparticles. Stearic acid was used as lipid and tween 80 was used as surfactant. By varying the type of lipid and input energy watt, batches were formulated. SLNs were evaluated for zeta potential, drug entrapment, particle size and in-vitro drug release. Crystallinity behaviour was determined by differential scanning calorimetry and powder X-ray diffraction. Anti-inflammatory activity was evaluated for batch M4 of SLNs. The gel was prepared for M4 batch. It was evaluated for viscosity, pH, drug content, in-vitro and ex-vivo diffusion study.
    RESULTS: SLN were developed successfully. Based on the size, entrapment efficiency, stability and drug release, batch M4 was selected. SLNs showed 74.8% entrapment efficiency. Forty-fold improvement was observed in the solubility. The particle size was of 682.9 nm and average size of 1047 nm. PDI was 0.685. Zeta potential was -29.5 mV. M4 SLNs batch of gel showed burst release followed by a controlled release for 8 hrs in in-vitro drug release.
    CONCLUSION: SLNs were successfully prepared by Microwave-assisted microemulsion technique. SLNs with anti-inflammatory activity was successfully developed with its transdermal delivery.
    Keywords:  Ketoprofen; Solid lipid nanoparticles; delivery; microemulsion; microwave; transdermal
    DOI:  https://doi.org/10.2174/2772270816666220126105802
  75. Photodiagnosis Photodyn Ther. 2022 Jan 22. pii: S1572-1000(22)00026-6. [Epub ahead of print] 102737
      PLGA (Poly lactic-co-glycolic acid) nanoparticles are in new trend for drug delivery due to their good biodegradability properties. In this study, we have synthesized the PLGA nanoparticles by solvent evaporation method and loaded the decarbazine (DTIC, 5-3,3-(dimethyl-ltriazeno)imidazole-4-carboxamide) and photosense (AlPc4) drug alone as well as combined with two different concentrations i-e 25 nM and 250 nM. No cytotoxicity (viability ∼ 100 %) was observed for different treatment arms either alone or in co-delivery of nano-formulation for Rhabdomyosarcoma (RD) cell culture which showed the biocompatibility of carrier. On comparison, the Photodynamic therapy (PDT) alone showed more significant cell death then the combinational therapy (PDT + chemotherapy) at 2 joule /cm2 and 5 joule /cm2. Lower doses co-delivery showed light dose dependent toxicity to culture i.e., 0 % death @ 2 joule /cm2, ∼ 40 % death @ 5 joule /cm2. Gene expressions of four apoptosis related genes (CASP3, CASP9, PARP1 and P53) were quantified by RT-PCR which shows down regulation for all the treatment arms indicating the absence of apoptosis for the cell death during PDT and combinational therapy. It was concluded that apoptosis related genes were down-regulated and morphological changes i.e., swelling and disruption suggest that the mode of cell death was necrosis.
    Keywords:  Combinational Therapy; Combinational index (CI); Decarbazine; PLGA nanoparticles; Photodynamic Therapy; Photosense; RT-PCR; Rhabdomyosarcoma; tumor suppressor genes
    DOI:  https://doi.org/10.1016/j.pdpdt.2022.102737
  76. ACS Biomater Sci Eng. 2022 Jan 25.
      Antibiotic-resistant bacteria and biofilms are among the most difficult challenges in infection treatment. Herein, lignin-copper sulfide (LS-CuS) nanocomposites were incorporated into a poly(vinyl alcohol) (PVA) hydrogel to fabricate a LS-CuS@PVA composite hydrogel with near-infrared-activated photothermal, photodynamic, and peroxidase-like performance. The antibacterial tests of LS-CuS@PVA exhibited the highest antibacterial rate that caused 3.8-log and 4.8-log reductions of colony forming units (CFUs) against Escherichia coli and Staphylococcus aureus in the presence of H2O2 under near-infrared (NIR) light irradiation for 10 min. The significantly improved bactericidal performance could be attributed to the synergistic effects of hyperthermia and reactive oxygen species (ROS). Furthermore, the LS-CuS@PVA hydrogel could eradicate the already formed biofilm and inhibit biofilm formation. Considering the highly effective antibacterial and antibiofilm activity of the LS-CuS@PVA hydrogel, this work could provide new insights for the design of poly(vinyl alcohol)-based composite hydrogels for wound healing and wound dressing.
    Keywords:  biofilm; copper sulfide; lignin; photothermal; reactive oxygen species
    DOI:  https://doi.org/10.1021/acsbiomaterials.1c01406
  77. Futur J Pharm Sci. 2022 ;8(1): 12
      Background: Nanotechnology is considered a new and rapidly emerging area in the pharmaceutical and medicinal field. Nanoparticles, as drug delivery systems, impart several advantages concerning improved efficacy as well as reduced adverse drug reactions.Main body: Different types of nanosystems have been fabricated including carbon nanotubes, paramagnetic nanoparticles, dendrimers, nanoemulsions, etc. Physicochemical properties of the starting materials and the selected method of preparation play a significant aspect in determining the shape and characteristics of the developed nanoparticles. Dispersion of preformed polymers, coacervation, polymerization, nano-spray drying and supercritical fluid technology are among the most extensively used techniques for the preparation of nanocarriers. Particle size, surface charge, surface hydrophobicity and drug release are the main factors affecting nanoparticles physical stability and biological performance of the incorporated drug. In clinical practice, many nanodrugs have been used for both diagnostic and therapeutic applications and are being investigated for various indications in clinical trials. Nanoparticles are used for the cure of kidney diseases, tuberculosis, skin conditions, Alzheimer's disease, different types of cancer as well as preparation of COVID-19 vaccines.
    Conclusion: In this review, we will confer the advantages, types, methods of preparation, characterization methods and some of the applications of nano-systems.
    Keywords:  Applications; Characterization; Delivery systems; Fabrication; Nanotechnology
    DOI:  https://doi.org/10.1186/s43094-022-00400-0
  78. J Nanobiotechnology. 2022 Jan 24. 20(1): 49
      A widely established prodrug strategy can effectively optimize the unappealing properties of therapeutic agents in cancer treatment. Among them, lipidic prodrugs extremely uplift the physicochemical properties, site-specificity, and antitumor activities of therapeutic agents while reducing systemic toxicity. Although great perspectives have been summarized in the progress of prodrug-based nanoplatforms, no attention has been paid to emphasizing the rational design of small-molecule lipidic prodrugs (SLPs). With the aim of outlining the prospect of the SLPs approach, the review will first provide an overview of conjugation strategies that are amenable to SLPs fabrication. Then, the rational design of SLPs in response to the physiological barriers of chemotherapeutic agents is highlighted. Finally, their biomedical applications are also emphasized with special functions, followed by a brief introduction of the promising opportunities and potential challenges of SLPs-based drug delivery systems (DDSs) in clinical application.
    Keywords:  Cancer; Drug delivery; Lipidic prodrug; Nanomedicine; Small molecule
    DOI:  https://doi.org/10.1186/s12951-022-01257-4
  79. Toxicol Res. 2022 Jan;38(1): 19-26
      Triple-negative breast cancer (TNBC) is one of the most aggressive types of breast cancer with poor outcomes. Patients with TNBC cannot benefit from targeted therapies such as Tamoxifen and Herceptin. The aim of the present study was to seek a preventive or therapeutic agent with a potential inhibitory effect on aggressive progression of TNBC. Anticancer effect of a natural compound curcumin have been demonstrated, however, development of more effective curcumin analogs with better bioavailability is needed. We investigated if a curcumin analog CA-5f could inhibit the invasive phenotype of TNBC cell lines in the present study. Treatment with CA-5f inhibited the viability of MDA‑MB‑231 and Hs578T TNBC cells, possible by inducing apoptosis. The invasive phenotypes of these cells were inhibited by CA-5f in a concentration-dependent manner. Protein expression of urokinase-type plasminogen activator (uPA), a serine protease known to degrade the extracellular matrix and lead to invasion, was markedly decreased by CA-5f in Hs578T cells. However, mRNA level of uPA was not altered by CA-5f, implicating that the effect of CA-5f was not through transcriptional regulation. Of note, CA-5f upregulated plasminogen activator inhibitor type (PAI)-1, which is known to inhibit uPA by interacting with urokinase-type plasminogen receptor, in TNBC cells. Taken together, these results demonstrated that CA-5f significantly inhibited the invasive phenotype of TNBC cells, possibly by decreasing the protein level of uPA through upregulating PAI-1. Our results may provide useful information on developing CA-5f as a potential therapeutic agent against malignant progression of TNBC.
    Keywords:  CA-5f; Invasion; PAI-1; Triple-negative breast cancer; uPA
    DOI:  https://doi.org/10.1007/s43188-021-00112-2
  80. Angew Chem Int Ed Engl. 2022 Jan 27.
      Hollow nanoparticles featuring tunable structures with spatial and chemical specificity are of fundamental interest. However, it remains a significant challenge to design and synthesize asymmetric nanoparticles with controllable topological hollow architecture. Here, a versatile kinetics-regulated cooperative polymerization induced interfacial selective superassembly strategy is demonstrated to construct a series of asymmetric hollow porous composites (AHPCs) with tunable diameters, architectures and components. The size and number of patches on Janus nanoparticles can be precisely manipulated by the precursor and catalyst content. Notably, AHPCs exhibit excellent photothermal conversion performance under the irradiation of near infrared (NIR) laser. Thus, AHPCs are utilized as NIR light triggered nanovehicles and cargos can be controllably released. In brief, this versatile superassembly approach offers a streamlined and powerful toolset to design diverse asymmetric hollow porous composites.
    Keywords:  Superassembly; asymmetric; hollow; kinetics; nanovehicles
    DOI:  https://doi.org/10.1002/anie.202200240
  81. Pharm Dev Technol. 2022 Jan 27. 1-49
      The evidence of cannabis exhibiting polypharmacological properties has been accumulating for the past few decades, particularly for its analgesic and anti-inflammatory abilities. However, inconsistent dosage forms and erratic absorption levels prevent medicinal cannabis products from becoming mainstream recommendations for pain management. Current cannabis products fail to address the undesirable characteristics associated with cannabinoids such as low solubility, poor bioavailability, and lack of specificity, all of which contribute to low therapeutic effect. In this narrative view, the pharmacokinetics of cannabis products and possible methods of drug delivery, in the form of carrier systems, will be explored. The incorporation of cannabinoids into carrier systems provides an opportunity to improve absorption levels, increase bioavailability and reduce adverse events allowing for a greater therapeutic effect.
    Keywords:  Cannabinoids; Cannabis; Carrier Systems; Drug Delivery Systems; Nanotechnology; Pharmacokinetics
    DOI:  https://doi.org/10.1080/10837450.2022.2035748
  82. Biomaterials. 2021 Dec 31. pii: S0142-9612(21)00688-8. [Epub ahead of print]281 121332
      The limited penetration depth of external excitation light would remarkably impair the therapeutic efficacy of photodynamic therapy (PDT) and its clinical utilization. Herein, we engineered bioluminescent bacteria by transforming attenuated Salmonella typhimurium strain ΔppGpp (S.T.ΔppGpp) with firefly-luciferase-expressing plasmid (Luc-S.T.ΔppGpp) as an internal light source to evenly illuminate whole tumors. Upon being fixed inside tumors with in-situ formed hydrogel, the colonized Luc-S.T.ΔppGpp together with D-luciferin could continuously generate light to excite photosensitizer chlorin e6 (Ce6), leading to effective suppression of different types of tumors including opaque melanoma and large rabbit tumors. Such bioluminescence-triggered PDT presented significant advantages over conventional PDT excited with an external 660-nm light, which at a much high light energy could only slightly retard the growth of small subcutaneous tumors. Furthermore, we uncovered that Luc-S.T.ΔppGpp boosted PDT could also elicit potent antitumor immunity post the treatment to inhibit tumor metastasis and prevent tumor challenge. Therefore, this work highlights that such bioluminescent bacteria boosted PDT is a general and highly effective therapeutic approach toward diverse cancers with varying light-absorbing capacities and tumor sizes, promising for potential clinical translation because of their acceptable safety profiles.
    Keywords:  Bioluminescent bacteria; Immunotherapy; Photodynamic therapy; Tumor treatment
    DOI:  https://doi.org/10.1016/j.biomaterials.2021.121332
  83. ACS Nano. 2022 Jan 26.
      An urgent need in chemodynamic therapy (CDT) is to achieve high Fenton catalytic efficiency at small doses of CDT agents. However, simple general promotion of the Fenton reaction increases the risk of damaging normal cells along with the cancer cells. Therefore, a tailored strategy to selectively enhance the Fenton reactivity in tumors, for example, by taking advantage of the characteristics of the tumor microenvironment (TME), is in high demand. Herein, a heterogeneous CDT system based on copper-iron peroxide nanoparticles (CFp NPs) is designed for TME-mediated synergistic therapy. CFp NPs degrade under the mildly acidic conditions of TME, self-supply H2O2, and the released Cu and Fe ions, with their larger portions at lower oxidation states, cooperatively facilitate hydroxyl radical production through a highly efficient catalytic loop to achieve an excellent tumor therapeutic efficacy. This is distinct from previous heterogeneous CDT systems in that the synergism is closely coupled with the Cu+-assisted conversion of Fe3+ to Fe2+ rather than their independent actions. As a result, almost complete ablation of tumors at a minimal treatment dose is demonstrated without the aid of any other therapeutic modality. Furthermore, CFp NPs generate O2 during the catalysis and exhibit a TME-responsive T1 magnetic resonance imaging contrast enhancement, which are useful for alleviating hypoxia and in vivo monitoring of tumors, respectively.
    Keywords:  Fenton reaction; antitumor agents; cancer; chemodynamic therapy; hypoxia; tumor microenvironment
    DOI:  https://doi.org/10.1021/acsnano.1c09171
  84. Environ Toxicol. 2022 Jan 27.
      Bladder cancer (BC) is a primary source of malignancy-associated death, and the mortality rate is high due to its prevalence of metastasis. Corilagin (CLG), a bioactive constituent of numerous medicinal plants, exerts assorted pharmacological actions comprising anti-cancer, apoptotic, anti-inflammatory, and hepatoprotective. CLG possesses a substantial anti-tumor prospective and less noxiousness in normal cells in vitro. However, the molecular mechanisms of CLG on BC cells are not studied well. The current research explored the molecular process intricate in the anticancer and anti-proliferative actions of CLG on the relocation of BC cells T24 and TSGH 8301. The cytotoxicity, apoptosis, adhesion, and migration of CLG on BC cells T24 and TSGH 8301 were evaluated by MTT assay, DAPI, Rh-123, cell adhesion, and cell migration assay. The results point out that CLG inhibits the viability, adhesion, movement, incursion, and inflammation, whereas persuades BC cells apoptosis in a concentration-dependent mode. Besides, CLG treated with T24 and TSGH-8301 cells subdue inflammatory and PI3K/Akt signaling pathways. CLG is accomplished of impeding BC cell migration, invasion, and metastasis through the repression of the NF-κB mediated P13K/Akt signaling. Our findings offer a unique vision into the demonstration of the anti-cancer potential of CLG on BC cells.
    Keywords:  NF-κB/P13K/Akt; apoptosis; bladder cancer; corilagin; inflammation
    DOI:  https://doi.org/10.1002/tox.23472
  85. J Mater Chem B. 2022 Jan 26.
      A series of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-based photosensitizers (AmBXI, X = H, M, Br) featuring a cationic mitochondrion-targeting group and near-infrared (NIR) absorption was synthesized. After extending the photosensitizers' π conjugation via Knoevenagel reaction, both the absorbance and emission maxima of AmBXI shifted to the phototherapeutic wavelength range (650-900 nm). Theoretical computations indicate that the introduction of bromine atoms promotes spin-orbit coupling, so that for each additional bromine atom in AmBXI an increase in singlet oxygen quantum yield would be expected (0.3%, 2.2%, and 4.1%, for AmBHI, AmBMI, and AmBBrI, respectively). Moreover, AmBXI photosensitizers exhibited low cytotoxicity in the dark and high phototoxicity, with the half maximal inhibitory concentrations of AmBBrI found to be 46.93 nM and 22.84 nM, while those of AmBMI were 129.7 nM and 58.34 nM in HeLa and MCF-7 cancer cells, respectively. Notably, introduction of a single bromine atom was enough to produce a cytotoxic effect. Furthermore, the presence of a quaternary ammonium group in AmBXI enabled the dyes to localize and stain the negatively charged mitochondria. The results presented herein indicate the straightforward and facile synthesis of NIR-light triggered mitochondrion-targeting photosensitizers.
    DOI:  https://doi.org/10.1039/d1tb02393d
  86. Small. 2022 Jan 27. e2107550
      The first-line treatment of advanced and metastatic human epidermal growth factor receptor type 2 (HER2+) breast cancer requires two HER2-targeting antibodies (trastuzumab and pertuzumab) and a taxane (docetaxel or paclitaxel). The three-drug regimen costs over $320,000 per treatment course, requires a 4 h infusion time, and has many adverse side effects, while achieving only 18 months of progression-free survival. To replace this regimen, reduce infusion time, and enhance efficacy, a single therapeutic is developed based on trastuzumab-conjugated nanoparticles for co-delivering docetaxel and siRNA against HER2 (siHER2). The optimal nanoconstruct has a hydrodynamic size of 100 nm and specifically treats HER2+ breast cancer cells over organ-derived normal cells. In a drug-resistant orthotopic HER2+ HCC1954 tumor mouse model, the nanoconstruct inhibits tumor growth more effectively than the docetaxel and trastuzumab combination. When coupled with microbubble-assisted focused ultrasound that transiently disrupts the blood brain barrier, the nanoconstruct inhibits the growth of trastuzumab-resistant HER2+ BT474 tumors residing in the brains of mice. The nanoconstruct has a favorable safety profile in cells and in mice. Combination therapies have become the cornerstone of cancer treatment and this versatile nanoparticle platform can co-deliver multiple therapeutic types to ensure that they reach the target cells at the same time to realize their synergy.
    Keywords:  HER2+; breast cancer; nanoparticles; siRNAs; taxane
    DOI:  https://doi.org/10.1002/smll.202107550
  87. J Control Release. 2022 Jan 24. pii: S0168-3659(22)00023-2. [Epub ahead of print]343 66-77
      The inhibition of autophagy is a feasible clinical strategy in tumor therapy. Traditional autophagy inhibitors are limited in clinical tumor therapy due to nonspecific biodistribution, systemic toxicity and limited antitumor effect. Herein, the autophagy inhibitor hydroxychloroquine (HCQ)-loaded nanodroplets (NDs) are synthesized to overcome these drawbacks. HCQ-NDs are endowed with endogenous pH- and exogenous ultrasound-responsive drug release and contrast enhanced ultrasound imaging performance. The combined application of ultrasound-targeted microbubble destruction (UTMD) and HCQ-NDs can severely break the homeostasis of tumor cells, simultaneously releasing HCQ rapidly to block autophagic flux and thus abolish the cytoprotective function. This strategy presents strong synergistic antitumor efficacy with the tumor growth inhibition value of 80.02% and synchronously inhibits tumor lung metastasis by inhibition of MMP2 and MMP9 production, eventually leading to tumor suppression. In addition, HCQ-NDs show excellent tumor-targeting, biocompatibility, biosafety and contrast-enhanced ultrasound imaging properties. Based on the above findings, this combined strategy rationally regulates the autophagic process of tumor cells and could be instructive for the design of clinical treatment modalities.
    Keywords:  Autophagy; Charge conversion; Theranostics; Tumor metastasis; Ultrasound
    DOI:  https://doi.org/10.1016/j.jconrel.2022.01.009
  88. Dose Response. 2022 Jan-Mar;20(1):20(1): 15593258211063983
      Background: In current years, researchers have shown their prime interest in developing multifunctional drug delivery systems, especially against cancers, for effective anticancer outcomes.Methodology: Raloxifene (RLX) loaded liposomal-graphene nanosheet (GNS) was developed. The novelty of this work was to enhance the solubilization of RLX and improvement of its bioavailability in the disease area. So, the selection of optimized formula design of experiment was implemented which produced the desired formula with the particle size of 156.333 nm. Further, encapsulation efficiency, in vitro release, and thermodynamic stability of optimized formulation were evaluated. The optimized formulation exhibited prolonged release of RLX for a longer period of 24 h, which can minimize the dose-related toxicity of the drug. Furthermore, optimized formulation demonstrated remarkable thermodynamic stability in terms of phase separation, creaming, and cracking.
    Results: The cytotoxicity study on the A549 cell line exhibited significant (P < .05) results in favor of optimized formulation than the free drug. The apoptotic activity was carried out by Annexin V staining and Caspase 3 analysis, which demonstrated remarkable promising results for optimized liposomal formulation.
    Conclusion: From the findings of the study, it can be concluded that the novel optimized liposomal formulation could be pondered as a novel approach for the treatment of lung cancer.
    Keywords:  Caspase 3 evaluation; apoptosis; cell cycle analysis; liposomes; lung cancer; raloxifene
    DOI:  https://doi.org/10.1177/15593258211063983
  89. Annu Rev Pathol. 2022 Jan 24. 17 181-204
      Triple-negative breast cancer (TNBC) encompasses a heterogeneous group of fundamentally different diseases with different histologic, genomic, and immunologic profiles, which are aggregated under this term because of their lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Massively parallel sequencing and other omics technologies have demonstrated the level of heterogeneity in TNBCs and shed light into the pathogenesis of this therapeutically challenging entity in breast cancer. In this review, we discuss the histologic and molecular classifications of TNBC, the genomic alterations these different tumor types harbor, and the potential impact of these alterations on the pathogenesis of these tumors. We also explore the role of the tumor microenvironment in the biology of TNBCs and its potential impact on therapeutic response. Dissecting the biology and understanding the therapeutic dependencies of each TNBC subtype will be essential to delivering on the promise of precision medicine for patients with triple-negative disease.
    Keywords:  basal-like; breast cancer; genomics; molecular pathology; subtypes; triple-negative
    DOI:  https://doi.org/10.1146/annurev-pathol-042420-093238
  90. ACS Appl Bio Mater. 2022 Jan 26.
      Intravesical instillation therapy is increasingly recognized as one of the most common clinical treatment strategies for bladder cancer. However, the antitumor efficacy of chemotherapy drugs is still limited due to their rapid clearance by periodic urination. To circumvent this issue, a drug-loaded thin film comprising the self-assembly of tannic acid (TA) and ferric ions (Fe3+) was in situ fabricated on the bladder wall in vivo. As expected, the TA@Fe film with adjustable thickness could effectively prolong the residence time of anticancer drugs in the bladder and realize sustained release of anticancer drugs. Together with the antibacterial properties, the TA@Fe film enabled improved chemotherapeutic efficacy. Moreover, the TA@Fe film caused no adverse effects on bladder function, demonstrating the in vivo biocompatibility. In addition, the T2 contrast effect of Fe3+ was employed to real-time monitor the disassembly of the TA@Fe film and the ensuing drug release process by magnetic resonance imaging. We believe that the TA@Fe-based drug delivery platform with enhanced retention in the bladder would be of great potential for treating various bladder diseases.
    Keywords:  biodegradable film; bladder cancer; in situ self-assembly; intravesical therapy; pH-dependent drug release
    DOI:  https://doi.org/10.1021/acsabm.1c01186