bims-kishpe Biomed News
on HSP70 role in hypoxia and metabolism in ECs
Issue of 2024–10–13
eightteen papers selected by
Alia Ablieh, Universität Heidelberg



  1. Heliyon. 2024 Oct 15. 10(19): e37900
      Lung metastasis, a leading cause of breast cancer mortality, lacks effective therapeutic options. Hypoxia-inducible factor 1-alpha (HIF-1α) plays important roles in breast cancer progression, but its direct impact on lung metastasis remains unclear. Herein, in this study, we investigated the role of HIF-1α in breast cancer lung metastasis and the potential of targeting it for therapeutic benefit. HIF-1α expression was knocked down in the 4T1 mouse mammary carcinoma cell line using a lentiviral vector. HIF-1α knockdown significantly reduced the migratory ability of 4T1 cells in vitro and lung metastasis in a mouse model. Mechanistically, HIF-1α knockdown decreased the expression of matrix metalloproteinases (MMP-2 and MMP-9) that degrade the extracellular matrix and suppressed the epithelial-to-mesenchymal transition (EMT) by increasing E-cadherin and decreasing vimentin expression. The findings of this study demonstrate that HIF-1α knockdown effectively inhibits lung metastasis of 4T1 cells both in vitro and in vivo by suppressing EMT. These results underscore a promising new approach for managing breast cancer metastasis.
    Keywords:  Breast cancer; EMT; HIF-1α; Lung metastasis; Mice
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e37900
  2. BMC Cancer. 2024 Oct 12. 24(1): 1270
       BACKGROUND: Lung cancer (LC) occupies an important position in the lethality of cancer patients. Acquired resistance to gefitinib in lung adenocarcinoma (LUAD) seriously affects the therapeutic efficacy of LC. Thus, it is of major scientific and clinical significance to probe the mechanism of gefitinib resistance in LUAD for ameliorating the prognosis of patients.
    METHODS: The expression of miRNAs in gefitinib-resistant LUAD cells was validated using qRT-PCR. Cell viability was assessed through CCK-8, whereas cell death was examined through PI staining. Changes in the ferroptosis process were evaluated by detecting the intracellular Glutathione (GSH), Malondialdehyde (MDA), and Reactive Oxygen Species (ROS) levels. Downstream targets of miR-138-5p were verified via luciferase reporter and RNA pull-down assays. RIP and qRT-PCR were employed to evaluate pri-miR-138-5p binding to DiGeorge critical region 8 (DGCR8) and the pri-miR-138-5p m6A modification level. Additionally, the impact of fat mass and obesity-associated protein (FTO) on LUAD gefitinib sensitivity was assessed in vivo by constructing a xenograft model.
    RESULTS: We observed that miR-138-5p was notably diminished in gefitinib-resistant cells. Overexpression of miR-138-5p suppressed viability while facilitated cell death and intracellular ferroptosis in gefitinib-resistant cells. Moreover, lipocalin 2 (LCN2) was the downstream target of miR-138-5p. The biological functions of miR-138-5p on gefitinib-resistant cells was reversed by introduction of LCN2. FTO suppressed the binding of DGCR8 to pri-miR-138-5p through m6A modification, thereby restraining the processing of miR-138-5p. Meanwhile, silencing of FTO enhanced the sensitivity of LUAD to gefitinib treatment.
    CONCLUSION: FTO suppressed the processing of miR-138-5p and then modulated the proliferation, death, and ferroptosis of gefitinib-resistant cells through the miR-138-5p/LCN2 pathway, which may put forward novel insights for clinically ameliorating the therapeutic effect of gefitinib in LUAD.
    Keywords:   FTO ; Ferroptosis; Gefitinib; LUAD; miR-138-5p
    DOI:  https://doi.org/10.1186/s12885-024-13036-5
  3. Mol Med Rep. 2024 Dec;pii: 217. [Epub ahead of print]30(6):
      Solute carrier family 12 member 5 (SLC12A5) is an oncogene in numerous types of cancer, however its function in breast cancer (BC) remains elusive. ETS translocation variant 4 (ETV4) promotes BC. Therefore, the present study aimed to elucidate the role of SLC12A5 in ferroptosis and glucose metabolism in BC cells as well as to understand the underlying mechanism. Analysis of data from the UALCAN database demonstrated expression levels of SLC12A5 in BC and its association with prognosis. Reverse transcription‑quantitative PCR and western blotting were conducted to evaluate the expression levels of SLC12A5 and ETV4 in BC cells. The abilities of BC cells to proliferate, migrate and invade were assessed using Cell Counting Kit‑8, colony formation, wound healing and Transwell assays. Thiobarbituric acid reactive substances assay and a C11 BODIPY 581/591 probe were used to evaluate lipid peroxidation. Ferroptosis resistance was evaluated by the measurement of Fe2+ and ferroptosis‑related solute carrier family 7a member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), acyl‑CoA synthetase long‑chain family member 4 (ACSL4) and transferrin receptor 1 (TFR1) protein levels. Glycolysis was assessed via evaluation of extracellular acidification rate, oxygen consumption rate, lactate production and glucose consumption. Finally, luciferase reporter and chromatin immunoprecipitation assay were used to verify the interaction between ETV4 and the SLC12A5 promoter. UALCAN database analysis indicated that SLC12A5 was upregulated in BC tissues and cells and that SLC12A5 elevation indicated a poor prognosis of patients with BC. SLC12A5 knockdown suppressed the BC cell proliferative, migratory and invasive capabilities. Moreover, SLC12A5 knockdown decreased BC cell ferroptosis resistance and glucose metabolism reprogramming. The transcription factor ETV4 was demonstrated to bind to the SLC12A5 promoter and upregulate its transcription. Furthermore, ETV4 overexpression counteracted the suppressive effect of SLC12A5 knockdown on the BC cell proliferative, migratory and invasive abilities, as well as on ferroptosis resistance and glucose metabolism reprogramming. Transcriptional activation of SLC12A5 by ETV4 modulated the migration, invasion, ferroptosis resistance and glucose metabolism reprogramming of BC cells.
    Keywords:  ETS translocation variant 4; breast cancer; ferroptosis; glucose metabolism reprogramming; solute carrier family 12 member 5
    DOI:  https://doi.org/10.3892/mmr.2024.13341
  4. PLoS One. 2024 ;19(10): e0310930
       OBJECTIVE: This study aimed to elucidate the effects of Hederagenin (HG) on hepatocellular carcinoma (HCC) and explore its potential molecular mechanisms.
    MATERIALS AND METHODS: Virtual screening was employed to identify potential targets within core pathways of liver cancer and to analyze the possible mechanisms of HG. CCK-8 assays were used to assess the viability of HCC cells, while Hoechst 33342/PI staining was utilized to evaluate apoptosis. The migration and invasion abilities of HCC cells were examined using Transwell and scratch assays, and single-cell cloning ability was assessed via colony formation assays. Subsequent qRT-PCR was conducted to determine the mRNA expression levels of FOXO1 and FOXO6 following HG treatment. Western blot (WB) analysis was employed to measure the protein expression levels of IGF1R, FOXO1, FOXO6, MMP2, MMP9, and VEGFA, as well as the phosphorylation status of FOXO1 Ser249.
    RESULTS: Virtual screening indicated that HG might exert antitumor effects through the FOXO signaling pathway. Experimental results demonstrated that HG induces apoptosis in a dose-dependent manner and inhibits the proliferation, migration, invasion, and single-cell cloning ability of HCC cells. After HG treatment, FOXO1 expression was upregulated, while the expression levels of IGF1R, phosphorylated FOXO1 Ser249, MMP2, MMP9, and VEGFA were downregulated.
    CONCLUSION: In summary, our study is the first to demonstrate that HG regulates the phosphorylation of FOXO1, affecting the proliferation, migration, and invasion of HCC cells. The findings suggest that HG can inhibit the migration of HCC cells in vitro. The data indicate that HG-mediated targeting of the FOXO1/FOXO6 pathway holds promise as a novel therapeutic approach.
    DOI:  https://doi.org/10.1371/journal.pone.0310930
  5. Aging (Albany NY). 2024 Oct 07. null
      Pulmonary macrophages from COPD patients are characterized by lower phagocytic and bactericidal activity whereas there is hypersecretion of pro-inflammatory cytokines. The prominent decline of GATA2 expression in pulmonary macrophages from COPD patients inspired us to figure out its role during COPD development. The expression levels of GATA2 were decreased in alveolar macrophages isolated from cigarette smoke (CS)-induced COPD mice and cigarette smoke extract (CSE)-treated macrophages. In vitro, both CSE and GATA2 knockdown via siRNAs elevated pro-inflammatory cytokines expression whereas inhibiting phagocytosis in macrophages. Integrated analysis of transcriptomics of GATA2-knockdown macrophages and the results of ChIP sequencing of GATA2 together with dual-luciferase reporter assay identified Abca1 and Pacsin1 as functional target genes of GATA2. Mechanistically, ABCA1 mediates the pro-inflammatory secretion phenotype and the dysfunction in early stage of phagocytosis of macrophages through TLR4/MyD88 and MEGF10/GULP1 pathways, respectively. PACSIN1/SUNJ1 partially mediates the disruption effects of GATA2 downregulation on maturation of phagolysosomes in macrophages. Together, our study suggests that GATA2 influences multiple functions of pulmonary macrophages by simultaneous transcriptional regulation of several target genes, contributing to the dysfunctions of pulmonary macrophages in response to CS, which provides an impetus for further investigations of GATA2 or other underappreciated transcription factors as regulatory hubs in COPD pathogenesis.
    Keywords:  COPD; Gata2; inflammation; macrophages; phagocytosis
    DOI:  https://doi.org/10.18632/aging.206129
  6. Am J Mens Health. 2024 Sep-Oct;18(5):18(5): 15579883241273305
      While cisplatin remains a frontline treatment for bladder cancer (BCa), the onset of resistance greatly hampers its effectiveness. RAC3 is closely linked to chemoresistance in cancer cells, but its specific role in cisplatin resistance within BCa is still elusive. RAC3 expression in BCa was analyzed using bioinformatics and quantitative polymerase chain reaction (qPCR). The gene set enrichment analysis (GSEA) identified RAC3-enriched pathways and the correlation between RAC3 and fatty acid synthase (FASN), a gene involved in fatty acid synthesis. Potential upstream transcription factors of RAC3 were predicted and their interaction with RAC3 was confirmed via dual-luciferase and chromatin immunoprecipitation (ChIP) assays. T24/DDP, a cisplatin-resistant BCa cell line, was established to probe into the regulatory role of RAC3 in cisplatin resistance. Cell proliferation was evaluated by colony formation and the IC50 values after cisplatin treatment were determined using cell counting kit-8 (CCK-8). The levels of free fatty acids and triglycerides (TGs), as well as the expression of DGAT2 and FASN proteins, were measured to gauge the extent of fatty acid synthesis in cells. Elevated expression of RAC3 was observed in BCa and the cisplatin-resistant BCa cells (T24/DDP). The knockdown of RAC3 within T24/DDP cells was demonstrated to counteract cisplatin resistance. Subsequent analyses identified RAC3 as being notably enriched in the fatty acid synthesis pathway, with Kruppel-like factor 1 (KLF1) emerging as a key upstream regulator. The overexpression of RAC3 was correlated with increased cisplatin resistance in T24/DDP cells, an effect that was mitigated by the addition of the FASN inhibitor, Orlistat. Furthermore, the downregulation of KLF1 suppressed RAC3 expression, disrupted fatty acid synthesis, and attenuated cisplatin resistance in T24/DDP cells. Conversely, the co-overexpression of RAC3 counteracted the effects conferred by KLF1 knockdown. Our study has validated that KLF1 activates RAC3 to mediate fatty acid synthesis and promote cisplatin resistance in BCa, suggesting the KLF1/RAC3 axis as a potential target for combating cisplatin-resistant BCa.
    Keywords:  KLF1; RAC3; bladder cancer; cisplatin resistance; fatty acid synthesis
    DOI:  https://doi.org/10.1177/15579883241273305
  7. J Gene Med. 2024 Oct;26(10): e3743
       BACKGROUND: Non-small cell lung cancer (NSCLC) is the main type of lung cancer with high morbidity and mortality. Vascular mimicry (VM), a distinct microcirculation model in tumors that differs from classical angiogenesis, is strongly associated with poor clinical outcomes in cancer patients. miR-491-5p has been reported to prevent NSCLC progression, including proliferation, metastasis, and angiogenesis. However, the effect and mechanism of miR-491-5p on VM have not been studied in NSCLC.
    METHODS: The expression of miR-491-5p was detected by quantitative reverse transcription PCR (qPCR) and fluorescence in situ hybridization (FISH). Cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) staining assays were used to examine cell growth. Tube formation assay was used to assess VM in NSCLC cells. Immunohistochemistry (IHC) and western blot were performed to detect protein expression. Immunoprecipitation was used to confirm the interaction between OTU deubiquitinase 7B (OTUD7B) and vascular endothelial growth factor A (VEGFA), and the level of ubiquitinated VEGFA. A nude mouse tumorigenesis model was used to evaluate the carcinogenic capacity of NSCLC cells in vivo. Luciferase reporter assay was used to identify the potential target of miR-491-5p.
    RESULTS: MiR-491-5p was found downregulated in NSCLC tissues, and miR-491-5p deficiency was strongly associated with angiogenesis. miR-491-5p mimics suppressed cell viability, migration, and VM. Conversely, an inhibitor of miR-491-5p had the opposite effect. OTUD7B, a deubiquitinase, was identified as a downstream target of miR-491-5p. A luciferase reporter assay indicated that miR-491-5p directly binds to the 3'UTR of OTUD7B. Moreover, mimics of miR-491-5p caused a significant reduction in the OTUD7B protein in NSCLC cells, and an inhibitor of miR-491-5p stabilized the OTUD7B protein. In addition, overexpression of OTUD7B promoted cell proliferation, migration, and VM, similar to the effects of an inhibitor of miR-491-5p. Further exploration revealed that OTUD7B interacts with VEGFA and that the miR-491-5p-OTUD7B axis modulates the ubiquitination of VEGFA. The rescue experiment indicated that OTUD7B compromised the inhibitory effects of miR-491-5p on the cellular function of NSCLC cells.
    CONCLUSIONS: Overall, our study first proved that miR-491-5p impedes VM by suppressing OUTD7B and promoting the ubiquitination of VEGFA. The miR-491-5p/OTUD7B axis may be a novel target for antiangiogenic therapy in NSCLC.
    Keywords:  NSCLC; VEGFA; miR‐491‐5p/OTUD7B axis; ubiquitination; vascular mimicry
    DOI:  https://doi.org/10.1002/jgm.3743
  8. Biofactors. 2024 Oct 11.
      The proliferation, metastasis, and drug resistance of cancer cells pose significant challenges to the treatment of lung squamous cell carcinoma (LUSC). However, there is a lack of optimal predictive models that can accurately forecast patient prognosis and guide the selection of targeted therapies. The extensive multi-omic data obtained from multi-level molecular biology provides a unique perspective for understanding the underlying biological characteristics of cancer, offering potential prognostic indicators and drug sensitivity biomarkers for LUSC patients. We integrated diverse datasets encompassing gene expression, DNA methylation, genomic mutations, and clinical data from LUSC patients to achieve consensus clustering using a suite of 10 multi-omics integration algorithms. Subsequently, we employed 10 commonly used machine learning algorithms, combining them into 101 unique configurations to design an optimal performing model. We then explored the characteristics of high- and low-risk LUSC patient groups in terms of the tumor microenvironment and response to immunotherapy, ultimately validating the functional roles of the model genes through in vitro experiments. Through the application of 10 clustering algorithms, we identified two prognostically relevant subtypes, with CS1 exhibiting a more favorable prognosis. We then constructed a subtype-specific machine learning model, LUSC multi-omics signature (LMS) based on seven key hub genes. Compared to previously published LUSC biomarkers, our LMS score demonstrated superior predictive performance. Patients with lower LMS scores had higher overall survival rates and better responses to immunotherapy. Notably, the high LMS group was more inclined toward "cold" tumors, characterized by immune suppression and exclusion, but drugs like dasatinib may represent promising therapeutic options for these patients. Notably, we also validated the model gene SERPINB13 through cell experiments, confirming its role as a potential oncogene influencing the progression of LUSC and as a promising therapeutic target. Our research provides new insights into refining the molecular classification of LUSC and further optimizing immunotherapy strategies.
    Keywords:  immunotherapy; lung squamous cell carcinoma; molecular subtype; multi‐omics; precision medicine
    DOI:  https://doi.org/10.1002/biof.2128
  9. Sci Rep. 2024 10 05. 14(1): 23226
      Upregulation of vascular endothelial growth factor (VEGF) and enhanced angiogenesis have been implicated in the severe progression of age-related macular degeneration (AMD). Abnormal arachidonate 5-lipoxygenase (ALOX5) is associated with AMD pathogenesis. However, no reports have shown the causal role of ALOX5 in angiogenesis during AMD. In the present study, ARPE-19 cells were exposed to hypoxia, an inducer of VEGF expression. Potential proteins implicated in AMD progression were predicted using bioinformatics. RNA affinity antisense purification-mass spectrometry (RAP-MS) was applied to identify the binding proteins of ALOX5 3'UTR. Expression of ALOX5 and YTH N6-methyladenosine RNA-binding protein 1 (YTHDF1) was detected by qRT-PCR and western blotting. VEGF expression and secretion were assessed by immunofluorescence and ELISA, respectively. The chicken embryo chorioallantoic membrane (CAM) was used to analyze the effect of ALOX5 on angiogenesis. RNA stability was assayed using the Actinomycin D assay. The results show that hypoxia promoted cell growth and increased VEGF expression in ARPE-19 cells. ALOX5 was associated with AMD progression, and hypoxia upregulated ALOX5 expression in ARPE-19 cells. ALOX5 silencing reduced VEGF expression induced by hypoxia in ARPE-19 cells. Moreover, the conditioned medium of ALOX5-silenced ARPE-19 cells could suppress the viability and migration of HUVECs and diminish angiogenesis in the CAM. Furthermore, YTHDF1 was validated to bind to ALOX5 3'UTR, and YTHDF1 promoted ALOX5 expression by elevating the stability of ALOX5 mRNA. In conclusion, our findings demonstrate that YTHDF1-regulated ALOX5 increases VEGF expression in hypoxia-exposed ARPE-19 cells and enhances the viability, migration, and angiogenesis of vascular endothelial cells.
    Keywords:  ALOX5; Age-related macular degeneration; Angiogenesis; VEGF; YTHDF1
    DOI:  https://doi.org/10.1038/s41598-024-72388-x
  10. NPJ Parkinsons Dis. 2024 Oct 05. 10(1): 186
      MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNA (mRNA) molecules and promoting their degradation or blocking their translation. Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. There is increasing evidence to suggest that miRNAs play a role in the pathogenesis of PD. Studies have identified several miRNAs that are dysregulated in the brains of PD patients, and animal models of the disease. MiRNA expression dysregulation contributes to the onset and progression of PD by modulating neuroinflammation, oxidative stress, and protein aggregation genes. Moreover, miRNAs have emerged as potential therapeutic targets for PD. This review elucidates the changes in miRNA expression profiles associated with PD, emphasising their potential as diagnostic biomarkers and therapeutic targets, and detailing specific miRNAs implicated in PD and their downstream targets. Integrated Insights into miRNA Function, Microglial Activation, Diagnostic, and Treatment Prospects in PD Note: This figure is an original figure created by the authors.
    DOI:  https://doi.org/10.1038/s41531-024-00791-2
  11. Transl Oncol. 2024 Oct 08. pii: S1936-5233(24)00277-8. [Epub ahead of print]50 102150
      Hepatocellular carcinoma (HCC) is distinguished by its insidious onset, difficult treatment, and poor prognosis. Ribosomal Protein Lateral Stalk Subunit P0 (RPLP0) is implicated in numerous tumor progression processes. Nevertheless, the regulatory mechanism of RPLP0 in HCC progression remains unclear. Our study suggested that RPLP0 exhibits high expression levels in HCC and possesses promising diagnostic capabilities, as indicated by its area under the curve (AUC) of 0.908. Further analysis showed that RPLP0 was a significant independent prognostic factor, and elevated expression levels of RPLP0 were linked with poorer overall survival (OS) and progression-free interval (PFI) outcomes. Additionally, reducing RPLP0 levels led to a decrease in HCC cell proliferation, clonality, invasion, migration, and xenograft tumor growth, as well as an increase in apoptosis. Furthermore, our findings indicated that microRNA(miR)-450b-5p induced downregulation of RPLP0, leading to the suppression of the JAK/STAT3 pathway and consequently hindering the advancement of HCC. The study indicates that RPLP0 plays a role as a carcinogenic factor in HCC and carries important diagnostic and prognostic implications. Targeting the miR-450b-5p/RPLP0/JAK/STAT3 axis has potential clinical value in treating HCC.
    Keywords:  Hepatocellular carcinoma (HCC); JAK/STAT3; Ribosomal protein lateral stalk subunit P0 (RPLP0); miR-450b-5p
    DOI:  https://doi.org/10.1016/j.tranon.2024.102150
  12. J Biol Chem. 2024 Oct 07. pii: S0021-9258(24)02372-X. [Epub ahead of print] 107870
      Protein ubiquitination is essential to govern cells' ability to cope with harmful environments by regulating many aspects of protein dynamics from synthesis to degradation. As important as the ubiquitination process, the reversal of ubiquitin chains mediated by deubiquitinating enzymes (DUBs) is critical for proper recovery from stress and re-establishment of proteostasis. Although it is known that ribosomes are decorated with K63-linked polyubiquitin (K63-ub) chains that control protein synthesis under stress, the mechanisms by which these ubiquitin chains are reversed and regulate proteostasis during stress recovery remain elusive. Here, we showed in budding yeast that the DUB Ubp2 is redox-regulated during oxidative stress in a reversible manner, which determines the levels of K63-ub chains present on ribosomes. We also demonstrate that Ubp2 can cleave single ubiquitin moieties out of chain and its activity is modulated by a series of repeated domains and the formation of disulfide bonds. By combining cellular, biochemical, and proteomics analyses, we showed that Ubp2 is crucial for restoring translation after stress cessation, indicating an important role in determining the cellular response to oxidative stress. Our work demonstrates a novel role for Ubp2, revealing that a range of signaling pathways can be controlled by redox regulation of DUB activity in eukaryotes, which in turn will define cellular states of health and diseases.
    Keywords:  deubiquitylation (deubiquitination); oxidative stress; redox regulation; translation control; yeast
    DOI:  https://doi.org/10.1016/j.jbc.2024.107870
  13. Autoimmunity. 2024 Dec;57(1): 2410192
      The study focuses on lung adenocarcinoma (LUAD), a predominant type of lung cancer. Despite advancements in diagnostics and molecular therapies, treatment remains challenging due to its low five-year survival rate. This study aims to investigate the role of the transmembrane protein TMEM164 in ferroptosis and anti-tumor immunity in LUAD, and to evaluate its potential as a therapeutic target. Through cellular experiments (such as QPCR, WB, CCK-8, EdU, Transwell, flow cytometry, CO-IP) and animal model experiments (including HE staining and IHC analysis), the relationship between TMEM164 expression and LUAD progression was explored, with particular attention to its mechanisms in ferroptosis and autophagy. The results show that TMEM164 expression is downregulated in LUAD and is associated with poor prognosis. Increasing TMEM164 expression significantly inhibits cell proliferation, migration, and invasion, while promoting an autophagy process dependent on ATG5 for autophagosome formation, thus facilitating ferroptosis. In mouse models, high TMEM164 expression combined with anti-PD-1 antibodies demonstrated synergistic anti-tumor effects. These findings highlight the critical role of TMEM164 in LUAD, suggesting that modulating TMEM164 expression could open new avenues for LUAD treatment.
    Keywords:  PD-1; TMEM164; autophagy; ferroptosis; tumor immunity
    DOI:  https://doi.org/10.1080/08916934.2024.2410192
  14. Biochem Biophys Res Commun. 2024 Sep 24. pii: S0006-291X(24)01279-8. [Epub ahead of print]735 150743
      Heparan sulfate (HS) is the most abundant glycosaminoglycan on the vascular endothelium and can regulate endothelial cell morphology and function in response to mechanical stimuli. This study investigated endothelial HS response to an inflammatory stimulus under static and arterial shear stress conditions. Human aortic endothelial cells (HAECs) under static conditions expressed significantly higher HS when treated with an inflammatory stimulus compared to untreated controls. HAECs exposed to an inflammatory stimulus after being conditioned with 10 dyn/cm2 of shear stress for 24 h did not express significantly higher HS compared to untreated controls under flow. To investigate the mechanism underlying this differential endothelial HS expression in response to an inflammatory stimulus under static and shear stress conditions, we hypothesized a shear dependent increase in AMP dependent protein kinase (AMPK) was regulating HS response to the inflammatory stimulus. AMPK inhibition using compound C decreased HAEC HS expression in response to inflammatory stimulus under arterial shear stress, revealing AMPK as a regulator of HS expression. Further investigation is needed to elucidate the mechanistic pathways underlying the interactions between HS and AMPK expression in endothelial cells and how they regulate HAEC inflammatory response.
    Keywords:  AMPK; Endothelial; Flow; Glycocalyx; Heparan sulfate; Inflammation; Kinase; Static; TNFa
    DOI:  https://doi.org/10.1016/j.bbrc.2024.150743
  15. Sci Rep. 2024 10 09. 14(1): 23559
      Lenalidomide (LEN) is widely used immunomodulatory drug (IMiD). Nonetheless, despite its efficacy, over time patients become resistant to LEN and relapse. Due to high clinical relevance, drug resistance in MM is being thoroughly investigated. However, less is known about predictors of good response to LEN-based treatment. The aim of this study was to identify molecular pathways associated with good and long response to LEN. The study included newly diagnosed MM patients (NDMM) and MM patients treated with first-line LEN and dexamethasone (RD) who achieved and least very good partial remission (VGPR). RNA was isolated from MM cells and new-generation sequencing was performed. Obtained results were validated with qRT-PCR. A global increase in gene expression was found in the RD group compared to NDMM, suggesting the involvement of epigenetic mechanisms. Moreover, upregulation of genes controlling the interaction within MM niche was detected. Next, genes controlling immune response were upregulated. In particular, the gene encoding the IL-17 receptor was overexpressed in the RD group which is a novel finding. This should be emphasized because IL-17-related signaling can potentially be targeted, providing the rationale for future research. Establishing the molecular background associated with long-lasting and profound response to LEN may improve LEN-based chemotherapy regimens and facilitate the development of adjuvant therapies to enhance its anti-MM activity.
    Keywords:  Bone marrow microenvironment; Good response to therapy; IL-17; Immune response; Lenalidomide; Multiple myeloma; Tumor niche
    DOI:  https://doi.org/10.1038/s41598-024-74558-3
  16. Cell Signal. 2024 Oct 04. pii: S0898-6568(24)00420-0. [Epub ahead of print]124 111447
      DDR1 interacts with fibrillar collagen and can affect β1 integrin-dependent signaling, but the mechanism that mediates functional interactions between these two different receptors is not defined. We searched for molecules that link DDR1 and β1 integrin-dependent signaling in response to collagen binding. The activation of DDR1 by binding to fibrillar collagen reduced by 5-fold, β1 integrin-dependent ERK phosphorylation that leads to MMP1 expression. In contrast, pharmacological inhibition of DDR1 or culturing cells on fibronectin restored ERK phosphorylation and MMP1 expression mediated by the β1 integrin. A phospho-site screen indicated that collagen-induced DDR1 activation inhibited β1 integrin-dependent ERK signaling by regulating autophosphorylation of focal adhesion kinase (FAK). Immunoprecipitation, mass spectrometry, and protein-protein interaction mapping showed that while DDR1 and FAK do not interact directly, the major vault protein (MVP) binds DDR1 and FAK depending on the substrate. MVP associated with DDR1 in cells expressing β1 integrin that were cultured on collagen. Knockdown of MVP restored ERK activation and MMP1 expression in DDR1-expressing cells cultured on collagen. Immunostaining of invasive cancers in human colon showed colocalization of DDR1 with MVP. These data indicate that MVP interactions with DDR1 and FAK contribute to the regulation of β1 integrin-dependent signaling pathways that drive collagen degradation.
    Keywords:  Adhesion receptors; Collagen; ERK; Major vault protein; Signaling
    DOI:  https://doi.org/10.1016/j.cellsig.2024.111447
  17. J Mol Evol. 2024 Oct 11.
      Gene expression is an inherently noisy process that is constrained by natural selection. Yet the condition dependence of constraint on expression noise remains unclear. Here, we address this problem by studying constraint on expression noise of E. coli genes in eight diverse growth conditions. In particular, we use variation in expression noise as an analog for constraint, examining its relationships to expression level and to the number of regulatory inputs from transcription factors across and within conditions. We show that variation in expression noise is negatively associated with expression level, implicating constraint to minimize expression noise of highly expressed genes. However, this relationship is condition dependent, with the strongest constraint observed when E. coli are grown in the presence of glycerol or ciprofloxacin, which result in carbon or antibiotic stress, respectively. In contrast, we do not observe evidence of constraint on expression noise of highly regulated genes, suggesting that highly expressed and highly regulated genes represent distinct classes of genes. Indeed, we find that essential genes are often highly expressed but not highly regulated, with elevated expression noise in glycerol and ciprofloxacin conditions. Thus, our findings support the hypothesis that selective constraint on expression noise is condition dependent in E. coli, illustrating how it may play a critical role in ensuring expression stability of essential genes in unstable environments.
    Keywords:   E. coli ; Essential gene; Evolution; Expression noise; Gene expression; Natural selection
    DOI:  https://doi.org/10.1007/s00239-024-10211-x
  18. Front Mol Biosci. 2024 ;11 1433557
       Background: Fibroblast growth factor receptor 1 (FGFR1) is known to play a crucial role in the pathogenesis of asthma, although the precise mechanism remains unclear. This study aims to investigate how DNA methylation-mediated silencing of FGFR1 contributes to the enhancement of NF-κB signaling, thereby influencing the progression of asthma.
    Methods: RT-qPCR was utilized to assess FGFR1 mRNA levels in the serum of asthma patients and BEAS-2B, HBEpiC, and PCS-301-011 cells. CCK8 assays were conducted to evaluate the impact of FGFR1 overexpression on the proliferation of BEAS-2B, PCS-301-011, and HBEpiC cells. Dual-luciferase and DNA methylation inhibition assays were performed to elucidate the underlying mechanism of FGFR1 gene in asthma. The MassARRAY technique was employed to measure the methylation levels of the FGFR1 DNA.
    Results: Elevated FGFR1 mRNA levels were observed in the serum of asthma patients compared to healthy controls. Overexpression of FGFR1 in BEAS-2B cells significantly enhanced cell proliferation and stimulated NF-ĸB transcriptional activity in HERK-293T cells. Furthermore, treatment with 5-Aza-CdR, a DNA demethylating agent, markedly increased the expression of FGFR1 mRNA in BEAS-2B, PCS-301-011, and HBEpiC cells. Luciferase activity analysis confirmed heightened NF-ĸB transcriptional activity in FGFR1-overexpressing BEAS-2B cells and BEAS-2B cells treated with 5-Aza-CdR. Additionally, a decrease in methylation levels in the FGFR1 DNA promoter was detected in the serum of asthma patients using the MassARRAY technique.
    Conclusion: Our findings reveal a potential mechanism involving FGFR1 in the progression of asthma. DNA methylation of FGFR1 inactivates the NF-ĸB signaling pathway, suggesting a promising avenue for developing effective therapeutic strategies for asthma.
    Keywords:  5-aza-CdR; DNA methylation; FGFR1; NF-ĸB; asthma
    DOI:  https://doi.org/10.3389/fmolb.2024.1433557