Arthritis Res Ther. 2025 Mar 04. 27(1): 48
Lucia Vernerová,
Martina Vokurková,
Nikoleta Alchus Laiferová,
Michal Nemec,
Maja Špiritović,
Oksana Mytiai,
Sabína Oreská,
Martin Klein,
Kateřina Kubínová,
Veronika Horváthová,
Tereza Kropáčková,
László Wenchich,
Michal Tomčík,
Jozef Ukropec,
Barbara Ukropcová,
Jiří Vencovský.
BACKGROUND: Low levels of vitamin D have been associated with several autoimmune diseases. A growing body of evidence supports the association of vitamin D with skeletal muscle damage, regeneration, and energy and lipid metabolism. The aim was to analyse vitamin D and its receptor (VDR) in the muscle tissue of patients with idiopathic inflammatory myopathies (IIM) and to relate them to clinical parameters and muscle lipid and energy metabolism.
METHODS: Forty-six patients with IIM and 67 healthy controls (HC) were included in the study. 27 IIM patients participated in a 24-week exercise intervention. Muscle biopsies were obtained from 7 IIM patients before/after training, 13 non-exercising IIM controls, and 21 HC. Circulating concentrations of 25(OH)D and 1,25(OH)D were measured. Gene expression of VDR and CYP27B1, the enzyme converting 25(OH)D to hormonally active 1,25(OH)D, was determined by qPCR in muscle tissue and primary muscle cells. Lipid oxidative metabolism was assessed in muscle tissue (mRNA, qPCR) and primary muscle cells (radioactive assays).
RESULTS: Lower levels of active 1,25(OH)D were observed in IIM patients compared with HC (mean ± SD: 125.0 ± 45.4 vs. 164.7 ± 49.2 pmol/L; p < 0.0001). 25(OH)D was associated with CRP (r = -0.316, p = 0.037), MITAX (r = -0.311, p = 0.040) and HAQ (r = -0.390, p = 0.009) in IIM. After 24 weeks of training, active 1,25(OH)D was associated with MMT8 (r = 0.866, p < 0.0001), FI-2 (r = 0.608, p = 0.013) and HAQ (r = -0.537, p = 0.032). Gene expression of both VDR and CYP27B1 in primary muscle cells decreased after training (p = 0.031 and p = 0.078, respectively). Associations of VDR mRNA in muscle tissue with MMT-8 (IIM: r = -0.559, p = 0.013), serum CK (HC: r = 0.484, p = 0.031), myoglobin (IIM: r = 0.510, p = 0.026) and myostatin (IIM: r = -0.519, p = 0.023) were observed. The expression of VDR in differentiated muscle cells correlated negatively with the complete oxidation of palmitic acid (r = -0.532, p = 0.028). Muscle mRNA of carnitine palmitoyl transferase 1 (CPT1) (downregulated in IIM, p = 0.001) correlated positively with serum 1,25(OH) vitamin D (r = 0.410, p = 0.042).
CONCLUSION: Reduced biologically active vitamin D in circulation suggests its impaired metabolism in IIM. Serum vitamin D levels and gene expression of its receptor and activating enzyme in muscle tissue were modified by regular exercise and associated with disease manifestations, physical fitness, and muscle lipid metabolism of IIM patients.
Keywords: Lipid metabolism; Mitochondria; Muscle; Myositis; Physical activity; Vitamin D