medRxiv. 2024 Aug 30. pii: 2024.08.29.24312791. [Epub ahead of print]
Introduction: Metabolic flexibility, the ability to switch from glucose to fat as a fuel source, is considered a marker of metabolic health. Higher fat oxidation is often associated with greater flexibility and insulin sensitivity, while lower fat oxidation is linked to metabolic inflexibility and insulin resistance. However, our study challenges the universal validity of this relationship, uncovering a more nuanced understanding of the complex interplay between fuel source switching and fat oxidation, especially in the presence of insulin resistance.
Methods: In an 8-week controlled feeding intervention, overweight to obese women with insulin resistance (as defined by McAuley's index) were randomized to consume either a diet based on the Dietary Guidelines for Americans 2010 (DGA) or a 'Typical' American Diet (TAD), n = 22 each. Participants were given a high-fat mixed macronutrient challenge test (MMCT) (60% fat, 28% carbohydrates, and 12% protein) at weeks 0, 2, and 8. Plasma lipids, metabolome, and lipidome were measured at 0, 0.5, 3, and 6h postprandial (PP); substrate oxidation measures were also recorded at 0,1 3, and 6h PP. Metabolic flexibility was evaluated as the change in fat oxidation from fasting to PP. Mixed model and multivariate analyses were used to evaluate the effect of diet on these outcomes, and to identify variables of interest to metabolic flexibility.
Results: Intervention diets (DGA and TAD) did not differentially affect substrate oxidation or metabolic flexibility, and equivalence tests indicated that groups could be combined for subsequent analyses. Participants were classified into three groups based on the % of consumed MMCT fat was oxidized in the 6h post meal period at weeks 0, 2 and 8. Low fat burners (LB, n = 6, burned <30% of fat in MMCT) and high fat burners (HB, n = 7, burned > 40% of fat in MMCT) at all weeks. Compared to LB, HB group had higher fat mass, total mass, lean mass, BMI, lower HDLc and lower RER (p < 0.05), but not different % body fat or % lean mass. During week 0, at 1h PP, LB had an increase in % fat oxidation change from 0h compared to HB (p<0.05), suggesting higher metabolic flexibility. This difference disappeared later in the PP phase, and we did not detect this beyond week 0. Partial least squares discriminant analysis (PLSDA (regular and repeated measures (sPLSDA)) models identified that LB group, in the late PP phase, was associated with higher rates of disappearance of acylcarnitines (AC) and lysophosphatidylcholines (LPC) from plasma (Q2: 0.20, R 2 X: 0.177, R 2 Y: 0.716).
Conclusion: In women with insulin resistance, a high fat burning capacity does not imply high metabolic flexibility, and not all women with insulin resistance are metabolically inflexible. LPCs and ACs are promising biomarkers of metabolic flexibility.