bims-kimdis Biomed News
on Ketones, inflammation and mitochondria in disease
Issue of 2022–08–07
eight papers selected by
Matías Javier Monsalves Álvarez, Universidad de O’Higgins



  1. J Physiol. 2022 Aug 04.
       KEY POINTS: Aside from exercise, there are no effective interventions for musculoskeletal decline, which begins in the fifth decade of life and contributes to disability and cardiometabolic diseases. Targeting both mitochondrial dysfunction and impaired protein homeostasis (proteostasis), which contribute to the age and disease process, may mitigate the progressive decline in overall musculoskeletal function (e.g. gait, strength). A potential intervention to target disease drivers is to stimulate Nrf2 activation, which leads to the transcription of genes responsible for redox homeostasis, proteome maintenance, and mitochondrial energetics. Here, we tested a purported phytochemical Nrf2 activator, PB125, to improve mitochondrial function and proteostasis in male and female Hartley guinea pigs, which are a model for musculoskeletal aging. PB125 improved mitochondrial respiration and attenuated disease- and age-related declines in skeletal muscle protein synthesis, a component of proteostasis, in both male and female Hartley guinea pigs.
    ABSTRACT: Impaired mitochondrial function and disrupted proteostasis contribute to musculoskeletal dysfunction. However, few interventions simultaneously target these two drivers to prevent musculoskeletal decline. Nuclear factor erythroid 2-related factor 2 (Nrf2) activates a transcriptional program promoting cytoprotection, metabolism, and proteostasis. We hypothesized daily treatment with a purported Nrf2 activator, PB125, in Hartley guinea pigs, a model of musculoskeletal decline, would attenuate the progression of skeletal muscle mitochondrial dysfunction and impaired proteostasis and preserve musculoskeletal function. We treated 2-month- and 5-month-old male and female Hartley guinea pigs for 3 and 10 months, respectively, with the phytochemical compound PB125. Longitudinal assessments of voluntary mobility were measured using Any-MazeTM open-field enclosure monitoring. Cumulative skeletal muscle protein synthesis rates were measured using deuterium oxide over the final 30 days of treatment. Mitochondrial oxygen consumption in soleus muscles was measured using high resolution respirometry. In both sexes, PB125 1) increased electron transfer system capacity; 2) attenuated the disease/age-related decline in coupled and uncoupled mitochondrial respiration; and 3) attenuated declines in protein synthesis in the myofibrillar, mitochondrial, and cytosolic subfractions of the soleus. These effects were not associated with statistically significant prolonged maintenance of voluntary mobility in guinea pigs. Collectively, treatment with PB125 contributed to maintenance of skeletal muscle mitochondrial respiration and proteostasis in a pre-clinical model of musculoskeletal decline. Further investigation is necessary to determine if these documented effects of PB125 are also accompanied by slowed progression of other aspects of musculoskeletal dysfunction. Abstract figure legend Musculoskeletal decline is an age-related multifactorial syndrome that is characterized by joint degeneration and loss of skeletal muscle function. Mitochondrial dysfunction and impaired protein turnover are two causative factors of musculoskeletal decline. 10 months of daily oral PB125 supplementation attenuated disease-related declines in mitochondrial respiration and protein synthesis in both male and female Hartley guinea pigs, which are a preclinical model of spontaneous and progressive musculoskeletal decline. Despite the attenuation of mitochondrial dysfunction and impaired protein turnover, there was not a statistically significant effect on the maintenance of mobility over the 10-month trial. This article is protected by copyright. All rights reserved.
    Keywords:  ageing; chronic disease; healthspan; lifespan; longevity; mitochondria; musculoskeletal; proteostasis; skeletal muscle
    DOI:  https://doi.org/10.1113/JP282273
  2. Mediators Inflamm. 2022 ;2022 7643322
      Inflammation and fibrosis are the important pathophysiologic processes in diabetic kidney disease (DKD), which is induced by epigenetics, especially histone posttranslational modification (HPTMs). Recent reports highlighted that butyrate, one of the short-chain fatty acids (SCFAs) primarily originated from the fermentation of dietary fiber in the gut, attenuates inflammation and fibrosis in the prevention and treatment of DKD; however, the molecular mechanisms are still unclear. Histone lysine butyrylation (Kbu), a novel histone modification marker induced by butyrate, has been found to be involved in the regulation of pathophysiological processes. To reveal the mechanisms of butyrate-induced histone (Kbu), in the prevention and treatment of DKD, both DKD models in vivo and in vitro were treated with sodium butyrate (NaB). Our results confirmed that exogenous NaB improved the disorder of glucose and lipid metabolism, prevented proteinuria and renal failure, and inhibited renal inflammation and fibrosis. Meanwhile, NaB also induced histone Kbu and H3K9 butyrylation (H3K9bu) in vivo and in vitro; however, inhibition of histone Kbu with the histone modification enzyme p300 inhibitor A485 reversed the anti-inflammatory and anti-fibrosis effects of NaB. In conclusion, our data reveal that NaB antagonizes renal inflammatory and fibrosis injury and attenuates DKD possibly via histone Kbu, suggesting that butyrate-induced histone Kbu or H3K9bu may be an important molecular mechanism in the pathogenesis and treatment of DKD.
    DOI:  https://doi.org/10.1155/2022/7643322
  3. Inflamm Res. 2022 Aug 01.
       BACKGROUND: Sepsis is an abnormal immune-inflammatory response that is mainly caused by infection. It can lead to life-threatening organ dysfunction and death. Severely damaged tissue cells will release intracellular histones into the circulation as damage-related molecular patterns (DAMPs) to accelerate the systemic immune response. Although various histone-related cytotoxicity mechanisms have been explored, those that affect extracellular histones involved in vascular smooth muscle cell (VSMC) dysfunction are yet to be determined.
    METHODS: Mouse aortic vascular smooth muscle cells (VSMCs) were stimulated with different concentrations of histones, and cell viability was detected by CCK-8 assay. Cellular senescence was assessed by SA β-gal staining. C57BL/6 mice were treated with histones with or without BML-275 treatment. RT-qPCR was performed to determine the expression of inflammatory cytokines. Western blotting was used to analyze the expression of NLRP3, ASC and caspase-1 inflammasome proteins. The interaction of NLRP3 and ASC was detected by CoIP and immunofluorescence staining.
    RESULTS: In this study, we found that extracellular histones induced senescence and inflammatory response in a dose-dependent manner in cultured VSMCs. Histone treatment significantly promoted apoptosis-associated speck-like protein containing CARD (ASC) as well as NACHT, LRR and PYD domains-containing protein 3 (NLRP3) interaction of inflammasomes in VSMCs. Forkhead box protein O4 (FOXO4), which is a downstream effector molecule of extracellular histones, was found to be involved in histone-regulated VSMC inflammatory response and senescence. Furthermore, the 5'-AMP-activated protein kinase (AMPK) signaling pathway was confirmed to mediate extracellular histone-induced FOXO4 expression, and blocking this signaling pathway with an inhibitor can suppress vascular inflammation induced by extracellular histones in vivo and in vitro.
    CONCLUSION: Extracellular histones induce inflammation and senescence in VSMCs, and blocking the AMPK/FOXO4 pathway is a potential target for the treatment of histonemediated organ injury.
    Keywords:  Extracellular histones; Inflammatory response; Organ injury; Senescence; VSMC
    DOI:  https://doi.org/10.1007/s00011-022-01618-7
  4. Oxid Med Cell Longev. 2022 ;2022 7896371
      The period circadian regulator 2 (Per2) gene is important for the modulations of rhythmic homeostasis in the gut and liver; disruption will cause metabolic diseases, such as obesity, diabetes, and fatty liver. Herein, we investigated the alterations in intestinal metabolic and hepatic functions in Per2 knockout (Per2 -/-, KO) and wild-type (Per2 +/+, WT) mice. Growth indices, intestinal metabolomics, hepatic circadian rhythms, lipid metabolism, inflammation-related genes, antioxidant capacity, and transcriptome sequencing were performed after euthanasia. Data indicated that KO decreased the intestinal concentrations of amino acids such as γ-aminobutyric acid, aspartic acid, glycine, L-allothreonine, methionine, proline, serine, and valine while it increased the concentrations of carbohydrates such as cellobiose, D-talose, fucose, lyxose, and xylose compared with WT. Moreover, the imbalance of intestinal metabolism further seemed to induce liver dysfunction. Data indicated that Per2 knockout altered the expression of hepatic circadian rhythm genes, such as Clock, Bmal1, Per1, Per3, Cry1, and Cry2. KO also induced hepatic lipid metabolism, because of the increase of liver index and serum concentrations of low-density lipoprotein, and the upregulated expression of Pparα, Cyp7a1, and Cpt1. In addition, KO improved hepatic antioxidant capacity due to the increase activities of SOD and GSH-Px and the decrease in concentrations of MDA. Lastly, KO increased the relative expression levels of hepatic inflammation-related genes, such as Il-1β, Il-6, Tnf-α, Myd88, and Nf-κB p65, which may potentially lead to hepatic inflammation. Overall, Per2 knockout induces gut metabolic dysregulation and may potentially trigger alterations in hepatic antioxidant and inflammation responses.
    DOI:  https://doi.org/10.1155/2022/7896371
  5. Front Endocrinol (Lausanne). 2022 ;13 873699
      Chronic low-grade inflammation in adipose tissue (AT) is a hallmark of obesity and contributes to various metabolic disorders, such as type 2 diabetes and cardiovascular diseases. Inflammation in ATs is characterized by macrophage infiltration and the activation of inflammatory pathways mediated by NF-κB, JNK, and NLRP3 inflammasomes. Adipokines, hepatokines and myokines - proteins secreted from AT, the liver and skeletal muscle play regulatory roles in AT inflammation via endocrine, paracrine, and autocrine pathways. For example, obesity is associated with elevated levels of pro-inflammatory adipokines (e.g., leptin, resistin, chemerin, progranulin, RBP4, WISP1, FABP4, PAI-1, Follistatin-like1, MCP-1, SPARC, SPARCL1, and SAA) and reduced levels of anti-inflammatory adipokines such as adiponectin, omentin, ZAG, SFRP5, CTRP3, vaspin, and IL-10. Moreover, some hepatokines (Fetuin A, DPP4, FGF21, GDF15, and MANF) and myokines (irisin, IL-6, and DEL-1) also play pro- or anti-inflammatory roles in AT inflammation. This review aims to provide an updated understanding of these organokines and their role in AT inflammation and related metabolic abnormalities. It serves to highlight the molecular mechanisms underlying the effects of these organokines and their clinical significance. Insights into the roles and mechanisms of these organokines could provide novel and potential therapeutic targets for obesity-induced inflammation.
    Keywords:  adipokines; adipose tissue; hepatokines; inflammation; myokines
    DOI:  https://doi.org/10.3389/fendo.2022.873699
  6. J Anim Sci. 2022 Aug 01. pii: skac035. [Epub ahead of print]100(8):
      Skeletal muscle hypertrophy is a culmination of catabolic and anabolic processes that are interwoven into major metabolic pathways, and as such modulation of skeletal muscle metabolism may have implications on animal growth efficiency. Muscle is composed of a heterogeneous population of muscle fibers that can be classified by metabolism (oxidative or glycolytic) and contractile speed (slow or fast). Although slow fibers (type I) rely heavily on oxidative metabolism, presumably to fuel long or continuous bouts of work, fast fibers (type IIa, IIx, and IIb) vary in their metabolic capability and can range from having a high oxidative capacity to a high glycolytic capacity. The plasticity of muscle permits continuous adaptations to changing intrinsic and extrinsic stimuli that can shift the classification of muscle fibers, which has implications on fiber size, nutrient utilization, and protein turnover rate. The purpose of this paper is to summarize the major metabolic pathways in skeletal muscle and the associated regulatory pathways.
    Keywords:  metabolism; muscle; nutrients; satellite cells
    DOI:  https://doi.org/10.1093/jas/skac035
  7. Cell Metab. 2022 Aug 02. pii: S1550-4131(22)00306-0. [Epub ahead of print]34(8): 1085-1087
      Lactate released from skeletal muscle during high-intensity exercise gives rise to a surge in circulating lactate-derived pseudo-dipeptide metabolites including N-lactoyl-phenylalanine (Lac-Phe). In a recent Nature paper, Li et al. use genetic and pharmacological evidence to now propose Lac-Phe to be an "exercise hormone" that suppresses appetite and obesity.
    DOI:  https://doi.org/10.1016/j.cmet.2022.07.007
  8. Endocrinol Metab (Seoul). 2022 Aug 05.
       Background: High cardiorespiratory fitness (CRF) protects against age-related diseases. However, the mechanisms mediating the protective effect of high intrinsic CRF against metabolic, cardiac, and brain impairments in non-obese versus obese conditions remain incompletely understood. We aimed to identify the mechanisms through which high intrinsic CRF protects against metabolic, cardiac, and brain impairments in non-obese versus obese untrained rats.
    Methods: Seven-week-old male Wistar rats were divided into two groups (n=8 per group) to receive either a normal diet or a highfat diet (HFD). At weeks 12 and 28, CRF, carbohydrate and fatty acid oxidation, cardiac function, and metabolic parameters were evaluated. At week 28, behavior tests were performed. At the end of week 28, rats were euthanized to collect heart and brain samples for molecular studies.
    Results: The obese rats exhibited higher values for aging-related parameters than the non-obese rats, indicating that they experienced obesity-induced premature aging. High baseline CRF levels were positively correlated with several favorable metabolic, cardiac, and brain parameters at follow-up. Specifically, the protective effects of high CRF against metabolic, cardiac, and brain impairments were mediated by the modulation of body weight and composition, the lipid profile, substrate oxidation, mitochondrial function, insulin signaling, autophagy, apoptosis, inflammation, oxidative stress, cardiac function, neurogenesis, blood-brain barrier, synaptic function, accumulation of Alzheimer's disease-related proteins, and cognition. Interestingly, this effect was more obvious in HFD-fed rats.
    Conclusion: The protective effect of high CRF is mediated by the modulation of several mechanisms. These effects exhibit greater efficacy under conditions of obesity-induced premature aging.
    Keywords:  Aging, premature; Cardiorespiratory fitness; Cardiovascular diseases; Metabolic syndrome; Neurodegenerative diseases; Obesity
    DOI:  https://doi.org/10.3803/EnM.2022.1430