bims-istrec Biomed News
on Integrated stress response in cancer
Issue of 2022–08–21
nine papers selected by
the Vincenzo Ciminale lab, Istituto Oncologico Veneto



  1. Oxid Med Cell Longev. 2022 ;2022 5382263
      Esophageal squamous cell carcinoma (ESCC), one of the most malignant human cancers in clinic, requires novel treatment. Daurisoline (DAS) is a component of traditional Chinese herb, which exhibits anti-cancer effects by autophagy inhibition and metastasis suppression. However, the effect and mechanism of DAS on ESCC remain unclear. Here, we found that DAS inhibited cell proliferation and colony formation in both human ESCC cell lines EC1 and ECA109. Mechanistically, DAS induced p21-/p27-dependent G1 phase cell cycle arrest and apoptosis in a dose-dependent manner. The induction of apoptosis by DAS was largely dependent on the activation of the transcription factor ATF4 and its downstream NOXA-dependent intrinsic and CHOP-DR5-dependent extrinsic apoptotic pathway. ATF4 activation induced by DAS was due to the generation of excessive reactive oxygen species (ROS) and the subsequent activation of endoplasmic reticulum (ER) stress through the p-eIF2α-ATF4 signal pathway, which can be largely abrogated by N-acetylcysteine (NAC), a scavenger of ROS. Moreover, DAS treatment significantly inhibited tumor growth and reduced tumor weight in the tumor xenograft mouse model by up-regulating key proteins related to cell cycle arrest and apoptotic pathway. Taken together, these findings identified DAS as a novel candidate for the treatment of ESCC.
    DOI:  https://doi.org/10.1155/2022/5382263
  2. Int J Biol Sci. 2022 ;18(13): 4853-4868
      During tumor progression, tumor cells are exposed to various stress conditions, which result in endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR) to restore ER homeostasis. Accumulating evidence reported the orchestrating role of ER stress in epithelial-mesenchymal transition (EMT) progress, but the detailed mechanism was unclear. Here, we identified ectopic expression of TMTC3 in cells undergoing ER stress and verified the association with EMT markers through the cellular model of ER stress and database analysis. TMTC3 was abnormally highly expressed in squamous cell carcinomas (SCCs), and regulated by TP63, an SCCs-specific transcription factor. Biological function experiments indicated that TMTC3 promoted a malignant phenotype in vitro, and accelerated tumor growth and metastasis in vivo. RNA-seq analyses and further experiments revealed that TMTC3 promoted the expression of EMT markers via interleukin-like EMT inducer (ILEI, FAM3C). Further studies on the mechanism showed that TMTC3 disrupted the interaction between PERK and GRP78 to activate the PERK pathway and promote the nuclear translocation of ATF4, which increased the transcriptional activity of ILEI. These findings indicated that TMTC3 activates GRP78/PERK signaling pathway during ER stress-induced EMT, which might serve as a potential therapeutic target in SCCs.
    Keywords:  EMT; ER stress; TMTC3; squamous cell carcinoma
    DOI:  https://doi.org/10.7150/ijbs.72838
  3. Front Oncol. 2022 ;12 890299
      Melanoma is an aggressive form of cancer with poor prognosis and survival rates and limited therapeutic options. Here, we report the anti-melanoma effect of 3-O-prenyl glycyrrhetinic acid (NPC-402), a derivative of glycyrrhtinic acid, from a reputed medicinal plant Glycyrrhiza glabra against B16F10 cells. We studied the cytotoxic effect of NPC-402 on melanoma cells and investigated the role of mitogen-activated protein (MAP) kinase, AKT axis, and endoplasmic reticulum (ER) stress/unfolded protein response (UPR)-mediated autophagy as the involved signaling cascade by studying specific marker proteins. In this study, 4-phenylbutyric acid (4PBA, a chemical chaperone) and small interference RNA (siRNA) knockdown of C/EBP Homologous Protein (CHOP)/growth arrest- and DNA damage-inducible gene 153(GAD153) blocked NPC-402-mediated autophagy induction, thus confirming the role of ER stress and autophagy in melanoma cell death. NPC-402 induced oxidative stress and apoptosis in melanoma cells, which were effectively mitigated by treatment with N-acetylcysteine (NAC). In vivo studies showed that intraperitoneal (i.p.) injection of NPC-402 at 10 mg/kg (5 days in 1 week) significantly retarded angiogenesis in the Matrigel plug assay and reduced the tumor size and tumor weight without causing any significant toxic manifestation in C57BL/6J mice. We conclude that NPC-402 has a high potential to be developed as a chemotherapeutic drug against melanoma.
    Keywords:  3-O-prenyl glycyrrhetinic acid; ER stress; apoptosis; autophagy; melanoma
    DOI:  https://doi.org/10.3389/fonc.2022.890299
  4. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2022 Aug;30(4): 1156-1161
       OBJECTIVE: To investigate the effect of melatonin (MLT) on the proliferation and apoptosis of human multiple myeloma cell line RPMI 8226 and its possible mechanism.
    METHODS: RPMI 8226 cells were cultured in vitro, and different concentrations of MLT were treated on RPMI 8226 cells. The effects of MLT on RPMI 8226 cell proliferation were detected by CCK-8 assay and methylcellulose cloning assay, and the effects of MLT on cell apoptosis were detected by AnnexinV-FITC /PI, flow cytometry. Western blot was used to determine the expression of apoptosis and endoplasmic reticulum stress-related proteins in each group, and CCK-8 assay was used to determine the effect of MLT combined with bortezemib on the viability of RPMI 8226 cells.
    RESULTS: MLT inhibited the proliferation of RPMI 8226 cells in a dose- and time-dependent manner (r=-0.9777,r=-0.9951). With the increase of MLT concentration, the number of clones decreased, the apoptosis of RPMI 8226 cells increased (P<0.05), the expression of anti-apoptotic protein XIAP decreased, the expression of apoptotic proteins Bax and Caspase3 increased, and the expression of endoplasmic reticulum stress-related proteins increased. Compared with the control group, the survival of RPMI 8226 cells in the MLT and BTZ combined group significantly decreased (P<0.01).
    CONCLUSION: MLT can inhibit the proliferation of RPMI 8226 cells, promote the apoptosis of RPMI 8226 cells, and enhance the anti-tumor effect of BTZ on RPMI 8226 cells. The mechanism may be related to endoplasmic reticulum stress.
    Keywords:  apoptosis ; endoplasmic reticulum stress ; melatonin ; myeloma cells
    DOI:  https://doi.org/10.19746/j.cnki.issn.1009-2137.2022.04.028
  5. Immunometabolism (Cobham). 2022 Jul;4(3): e00007
      The endoplasmic reticulum (ER) is a specialized organelle that participates in multiple cellular functions including protein folding, maturation, trafficking, and degradation to maintain homeostasis. However, hostile conditions in the tumor microenvironment (TME) disturb ER homeostasis. To overcome these conditions, cells activate ER stress response pathways, which are shown to augment the suppressive phenotypes of immune cells; however, the molecular mechanisms underpinning this process remain elusive. Here, we discuss a recent study by Raines et al, that suggests the role of the helper T-cell 2 (TH2) cytokine interleukin-4 (IL-4), and the TME in facilitating a protein kinase RNA-like ER kinase (PERK)-signaling cascade in macrophages, which promotes immunosuppressive M2 macrophage activation and proliferation. Further, the authors showed that PERK signaling promotes both mitochondrial respirations to fulfill cellular energy requirements and signaling through ATF4, which regulate phosphoserine aminotransferase 1 (PSAT1) activity to mediate the serine biosynthesis pathway. These results highlight a previously uncharacterized role for PERK in cellular metabolism and epigenetic modification in M2 macrophages, and thus offers a new therapeutic strategy for overcoming the immunosuppressive effects in the TME.
    Keywords:  ER stress; M2 macrophage; endoplasmic reticulum; myeloid cell-derived suppressor cells; protein kinase RNA-like ER kinase; tumor-associated macrophages
    DOI:  https://doi.org/10.1097/IN9.0000000000000007
  6. Transl Cancer Res. 2022 Jul;11(7): 1909-1924
       Background: The high case-fatality rate of patients with lung adenocarcinoma (LUAD) emphasizes the importance of identifying a robust and reliable prognostic signature for LUAD patients. Endoplasmic reticulum (ER) stress results from protein misfolding imbalance and has been shown to participate in the development of cancer. We aimed to develop and validation a reliable and robust ER stress-related prognostic signature to accurately predict prognosis for patients with LUAD.
    Methods: The mRNA expressions data and the clinical information were downloaded from The Cancer Genome Atlas (TCGA) as training set. The data of external validation sets were downloaded from GEO database with the accession number GSE 30219, GSE 31210, GSE 50081 and GSE 37745. Univariate Cox regression analyses was performed to identify mRNAs associated with overall survival (OS) in LUAD. ER-associated genes were retrieved using GeneCards database. Next, we construct the best risk score model by the least absolute shrinkage and selection operator (LASSO) regression with tenfold cross-validation. Subsequently, predictive models and risk scores were developed in the TCGA training dataset. Cox proportional hazards regression models were used for univariate and multivariate analysis of risk score and clinicopathologic characteristics. As a validation set GSE30219, GSE31210 and (GSE50081+GSE37745) were used to validate the predictive performance of the model in TCGA. Finally, functional enrichment analysis, including the gene ontology (GO) enrichment analysis, the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways and gene set enrichment analysis (GSEA) were performed to further explore function and mechanisms.
    Results: A prognostic prediction model based on eight genes was developed in the TCGA training dataset. As expected, in validation sets, patients with higher risk scores were found to have worse prognosis. Time-dependent ROC curve analyses demonstrated that the risk score model was reliable. The nomograms showed excellent predictive ability. Multivariate Cox regression analyses indicated that the risk score was an independent prognostic factor for LUAD. Additionally, functional enrichment analysis showed that the relevant biomarkers were enriched in cell cycle and glycolysis related signaling pathways.
    Conclusions: The 8-gene signature may enable improved the prediction of clinical events and decisions about management of LUAD.
    Keywords:  Lung adenocarcinoma (LUAD); endoplasmic reticulum (ER) stress; overall survival (OS); prognostic signature; risk score
    DOI:  https://doi.org/10.21037/tcr-22-106
  7. NPJ Precis Oncol. 2022 Aug 18. 6(1): 58
      Immunotherapies have been explored in treating solid tumors, albeit with disparate clinical effects in distinct cancer types. Systematic interrogation of immune cells in the tumor microenvironment (TME) is vital to the prediction of immunotherapy response and the development of innovative immunotherapeutics. To comprehensively characterize the immune microenvironment in advanced biliary tract cancer (BTC), we utilized single-cell RNA sequencing in unselected viable cells from 16 matched samples, and identified nineteen cell subsets from a total of 45,851 cells, in which exhausted CD8+ T cells, macrophages, and dendritic cells (DCs) in BTC were shown to augment and communicate within the TME. Transcriptional profiles coupled with T cell receptor (TCR) sequences revealed that exhausted CD8+ T cells retained clonal expansion and high proliferation in the TME, and some of them highly expressed the endoplasmic reticulum stress (ER) response gene, XBP1, indicating the role of ER stress in remodeling TME. Functional assays demonstrated that XBP1 and common immune checkpoints (PD1, TIGIT) were significantly upregulated in CD8+ T cells cocultured within the TME of BTC cells (GBC-SD, HCCC-9810). When treating the coculture groups with the specific inhibitor of IRE1α-XBP1 (4μ8C), the downregulation of TIGIT was observed in the treatment group. Collectively, comprehensive transcriptome profiling provides deep insights into the immune atlas in advanced BTC, which might be instrumental in exploring innovative immunotherapy strategies.
    DOI:  https://doi.org/10.1038/s41698-022-00300-9
  8. Med Oncol. 2022 Aug 16. 39(11): 159
      Serum orosomucoid1-like protein 3 (ORMDL3) is a membrane protein in the endoplasmic reticulum, known to regulate many important signal transduction processes and autophagy regulation, but it is unclear whether it is involved in the intratumoral microenvironment and cancer drug resistance. Our present study found that silencing ORMDL3 increases the inhibitory effect of sorafenib on the viability and proliferation in HCC cells, and increases the sensitivity of HCC cells to sorafenib. In addition, silencing ORMDL3 can increase ROS levels by inhibiting autophagy, thereby increasing sorafenib-induced apoptosis of HCC cells. Further, our study also found that ORMDL3 silencing inhibits autophagy through the PERK-ATF4-Beclin1 pathway, thus affecting sorafenib sensitivity. The in vivo effects of sorafenib were tested by xenografting using nude mice. It showed that silencing ORMDL3 in HCC cells could increase the inhibitory effect of sorafenib on the growth of tumors. This is the first report to describe the relationships among ORMDL3, autophagy, and sorafenib resistance. This study provides available targets that might have a synergetic effect with sorafenib.
    Keywords:  Autophagy; Hepatocellular carcinoma; ORMDL3; Oxidative stress; Sorafenib
    DOI:  https://doi.org/10.1007/s12032-022-01767-z
  9. Cancer Lett. 2022 Aug 15. pii: S0304-3835(22)00364-0. [Epub ahead of print] 215880
      Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC). However, it is difficult to alleviate this disease process using single-agent chemotherapy. Using combination therapies for advanced HCC has become a major trend. Given that STAT3 overexpression is involved in chemotherapy resistance and the immune escape of HCC cells, it has become a potential therapeutic target for HCC in recent years. GEO database analysis showed that STAT3 levels in tumor tissues from non-responders were significantly higher than those in responders to sorafenib. Our studies demonstrated that STAT3 knockdown promoted sorafenib-induced ER stress-induced apoptosis. Importantly, the DNA released by dead HCC cells stimulated the cGAS-STING signaling pathway in CD103+ DCs and promoted type I interferon production, thus, enhancing the anti-tumor function of CD8+ T and NK cells. In conclusion, our results revealed that the combination strategy of sorafenib and STAT3 knockdown might be a potential treatment strategy for HCC, directly and efficiently disturbing the tumor features of HCC cells while improving the tumor microenvironment via the cGAS-STING-Type I IFNs axis of DCs, inducing anti-HCC immune responses.
    Keywords:  CD103(+) DCs; ER stress; PKR; STING; cGAS; p-eIF2α
    DOI:  https://doi.org/10.1016/j.canlet.2022.215880