bims-istrec Biomed News
on Integrated stress response in cancer
Issue of 2022–07–10
thirteen papers selected by
the Vincenzo Ciminale lab, Istituto Oncologico Veneto



  1. Chem Biodivers. 2022 Jul 04. e202200123
      Heterocyclic compounds have emerged as promising and appealing scaffolds for developing effective antitumor agents. Here, the effects of synthesized 24 different 1-pyrroline derivatives (PDs) containing substituted aryl sulfide moiety were investigated on human breast cancer cell lines. The viability of cells was assessed via MTT assay. Reactive oxygen species (ROS) generation was analyzed via fluorescent dye CM-H2DCFDA. Apoptotic cells were determined via flow cytometry. Endoplasmic reticulum (ER) stress-associated protein levels were analyzed via western blot analysis. Four of the PDs (PD-12, -14, -16 and -17) had great cytotoxic selectivity against breast cancer cells. Apoptotic cell death was induced by PDs via the generation of ROS. PDs significantly increased the GRP78, p-PEAK, p-eIF2α, and CHOP protein levels indicating ER stress in breast cancer cells. These results imply that newly synthesized PDs may be potential anticancer agents as they selectively inhibit breast cancer cells.
    Keywords:  1-pyrroline; ER stress; apoptosis; breast cancer
    DOI:  https://doi.org/10.1002/cbdv.202200123
  2. J Clin Med. 2022 Jun 24. pii: 3662. [Epub ahead of print]11(13):
      Glioblastoma multiforme (GBM) is an aggressive brain tumor with high risks of recurrence and mortality. Chemoradiotherapy resistance has been considered a major factor contributing to the extremely poor prognosis of GBM patients. Therefore, there is an urgent need to develop highly effective therapeutic agents. Here, we demonstrate the anti-tumor effect of morusin, a typical prenylated flavonoid, in GBM through in vivo and in vitro models. Morusin showed selective cytotoxicity toward GBM cell lines without harming normal human astrocytes when the concentration was less than 20 µM. Morusin treatment significantly induced apoptosis of GBM cells, accompanied by the activation of endoplasmic reticulum (ER) stress, and the appearance of cytoplasmic vacuolation and autophagosomes in cells. Then, we found the ER stress activation and cytotoxicity of morusin were rescued by ER stress inhibitor 4-PBA. Furthermore, morusin arrested cell cycle at the G1 phase and inhibited cell proliferation of GBM cells through the Akt-mTOR-p70S6K pathway. Dysregulation of ERs and cell cycle in morusin exposed GBM cells were confirmed by RNA-seq analysis. Finally, we demonstrated the combination of morusin and TMZ remarkably enhanced ER stress and displayed a synergistic effect in GBM cells, and suppressed tumor progression in an orthotopic xenograft model. In conclusion, these findings reveal the toxicity of morusin to GBM cells and its ability to enhance drug sensitivity to TMZ, suggesting the potential application value of morusin in the development of therapeutic strategies for human GBM.
    Keywords:  cytoplasmic vacuolation; endoplasmic reticulum stress; glioblastoma multiforme; morusin; tumor progression
    DOI:  https://doi.org/10.3390/jcm11133662
  3. Cancers (Basel). 2022 Jun 21. pii: 3043. [Epub ahead of print]14(13):
      Our team has previously reported a series of quinazoline-based lapatinib hybrids as potent kinase-targeting anticancer agents. Among them, AF8c showed a relatively safe profile in colorectal cancer (CRC) cells. In this study, we delineate a novel anticancer activity of AF8c in CRC cells. AF8c mediated p53-dependent apoptosis of CRC cells via the generation of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS), as well as activation of nuclear respiratory factor 2 alpha subunit (Nrf2) and death receptor 5 (DR5), among others. The silencing of DR5 attenuated the expression levels of Nrf2 and partially inhibited AF8c-induced apoptosis. Additionally, upregulation of Nrf2 by AF8c evoked apoptosis through a decrease in antioxidant levels. Treatment of a CRC mice model with AF8c also resulted in the upregulation of DR5, Nrf2, and CHOP proteins, subsequently leading to a significant decrease in tumor burden. In comparison with lapatinib, AF8c showed higher cellular antiproliferative activity at the tested concentrations in CRC cells and synergized TRAIL effects in CRC cells. Overall, our results suggest that AF8c-induced apoptosis may be associated with DR5/Nrf2 activation through ER stress and ROS generation in CRC cells. These findings indicate that AF8c represents a promising polypharmacological molecule for the treatment of human CRC.
    Keywords:  AF8c; ER stress; apoptosis; colorectal cancer (CRC); death receptors (DRs); kinase; nuclear respiratory factor 2 alpha subunit (Nrf2); polypharmacological molecules; reactive oxygen species (ROS)
    DOI:  https://doi.org/10.3390/cancers14133043
  4. Neoplasma. 2022 Jun 30. pii: 220428N462. [Epub ahead of print]
      Melanoma with a BRAF mutation is more common to develop into a fatal disease. BRAF mutation inhibitor-induced autophagy affects the drug efficacy in many cancer types. The role of autophagy during BRAF inhibition in uveal melanoma (UM) remains unclear. In this study, we examined the autophagic flux and compared the number of autophagic vacuoles during the BRAF inhibition in UM. The PKR-like endoplasmic reticulum (ER) kinase (PERK) arm was studied to test whether the ER stress was involved. The effects of downregulation of ER stress by targeting the PERK arm (pharmacologically and genetically) were also assessed. We found a dose-dependent increase of autophagic flux in OCM1A cells during the BRAF inhibition. This phenomenon was further verified by an enhanced number of GFP-LC3 puncta and was finally confirmed by raised autophagic index examined by transmission electron microscopy. Pathway analysis revealed that the vemurafenib (the BRAF inhibitor)-induced autophagy was independent of the MAPK signaling pathway. Instead, it was possibly regulated via the enhanced ER stress response. We further found that the inhibition of ER stress response rescued cell death. Therefore, our results suggest BRAF inhibition promotes ER stress response-induced autophagy in UM. Targeting ER stress response can partially revert autophagy and rescue cell death, which may impair the anti-tumor effect of BRAF inhibitor in UM.
    DOI:  https://doi.org/10.4149/neo_2022_220428N462
  5. Toxicol Res (Camb). 2022 Jun;11(3): 498-510
      Dezocine, a dual agonist and antagonist of the μ-opioid receptor and κ-opioid receptor, is widely used as an analgesic in China. At present, there are few studies on anti-tumor effects of dezocine, most of which are used to treat cancer pain. However, it has recently been reported that dezocine can induce apoptosis of triple negative breast cancer cells. Dezocine may have some anti-tumor activity, but the effect and potential mechanism of dezocine in the treatment of other types of cancer remain to be fully studied. The purpose of the present study was to investigate the effect of dezocine on human Hela cervical carcinoma cells, and to elucidate the underlying molecular mechanisms. We performed CCK-8 assays, clone formation assays, xenograft, flow cytometry analysis, western blot and RNA-seq analysis to evaluate the effects of dezocine on Hela cells. In addition, the role of endoplasmic reticulum (ER) stress in dezocine-induced apoptosis was investigated using qPCR and western blot analysis. Dezocine inhibited Hela cell viability in dose-dependent and time-dependent manners, and notably did not achieve this effect by targeting the opioid receptors. Further mechanistic studies demonstrated that dezocine activated ER stress by upregulating the expression of GRP78, IRE1 and p-JNK, and that dezocine-induced apoptosis was attenuated when the ER stress pathway was blocked. Our results provide a foundation to support the redefinition of dezocine as a novel, adjuvant treatment for patients with cervical cancer, although further research will be required to support its application in clinical practice.
    Keywords:  ER stress; apoptosis; cervical cancer; dezocine; opioid receptor
    DOI:  https://doi.org/10.1093/toxres/tfac026
  6. Small. 2022 Jul 07. e2202728
      Cancer phototherapy activates immunogenic cell death (ICD) and elicits a systemic antitumor immune response, which is an emerging approach for tumor treatment. Most available photosensitizers require a combination of immune adjuvants or checkpoint inhibitors to trigger antitumor immunity because of the immunosuppressive tumor microenvironment and the limited phototherapeutic effect. A class of tumor-targeting heptamethine cyanine photosensitizers modified with an endoplasmic reticulum (ER)-targeting group (benzenesulfonamide) are synthesized. Phototherapy of tumor cells markedly amplifies ER stress and promotes tumor antigen release, as the ER is required for protein synthesis, secretion, and transport. More importantly, different electron-donating or -withdrawing substitutions are introduced into benzenesulfonamide to modulate the nonradiative decay pathways through intramolecular charge transfer, including singlet-triplet intersystem crossing (photodynamic effect) and internal thermal conversion (photothermal effect). Thus, a heptamethine cyanine photosensitizer containing a binitro-substituted benzenesulfonamide (ER-Cy-poNO2 ) is identified that preferentially accumulates in the ER of tumor cells. It significantly enhances the phototherapeutic effect by inducing excessive ER stress and robust ICD. Consequently, this small molecular photosensitizer triggers a sufficient antitumor immune response and effectively suppresses the growth of both primary and distant metastatic tumors, whereas no apparent toxicity is observed. This heptamethine cyanine photosensitizer has the potential to enhance cancer-targeted immunotherapy.
    Keywords:  cancer phototherapy; heptamethine cyanines; immunotherapy; photosensitizers
    DOI:  https://doi.org/10.1002/smll.202202728
  7. Pathology. 2022 Jul 02. pii: S0031-3025(22)00176-3. [Epub ahead of print]
      Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) have been shown to be crucial in the pathogenesis and response to treatment in various cancers. However, such response has not been profiled in oral squamous cell carcinoma (OSCC), the most frequent form of cancer in the head and neck region. Cell lines derived from OSCC (SCC4, SCC15 and SCC25) and normal oral mucosa (OKF4, OKF6 and OKP7) were subjected to tunicamycin-induced ER stress (2.5 μg/mL for 24 h) after which the differential regulation of 84 key UPR/ER stress genes were assessed using Quantitative real-time reverse transcription polymerase chain reaction. The expression of the transcription factors SREBP1 and CREB3L3, and the activation of SREBP1, were examined using ELISA and a transcription factor assay. The expression of DDIT3 was immunohistochemically verified in OSCC tissue samples. SREBP1 and CREB3L3 were significantly up-regulated in OSCC with and without tunicamycin-induced ER stress. A significantly higher level of SREBP1 transcriptional activation was observed in OSCC. Apoptosis-associated genes (DDIT3, HTRA4 and HSPA1L) were also significantly up-regulated in OSCC upon ER stress induction. The findings demonstrated the involvement of UPR and ER stress in the pathogenesis of OSCC through the identification of apoptosis-associated genes (DDIT3, HSPA1L and HTRA4) and regulators of metabolism (SREBP1 and CREB3L3) as the key factors differentiating between normal and malignant oral keratinocytes.
    Keywords:  CREB3L3; DDIT3; ER stress; OSCC; SREBF1; SREBP1; UPR; apoptosis; heat shock protein; oral cancer
    DOI:  https://doi.org/10.1016/j.pathol.2022.04.003
  8. Front Cell Dev Biol. 2022 ;10 913824
      Triple-negative breast cancer (TNBC) is the most lethal breast cancer subtype owing to the lack of targeted therapeutic strategies. Immunogenic cell death (ICD), a modality of regulated cancer cell death, offered a novel option for TNBC via augmenting tumor immunogenic microenvironment. However, few ICD-inducing agents are currently available. Here, we showed that Trametes robiniophila Murr (Huaier) triggered ICD in TNBC cells by promoting cell surface calreticulin (CRT) exposure, and increasing release of adenosine triphosphate (ATP) and high-mobility group protein B1 (HMGB1). Co-culturing with Huaier-treated TNBC cells efficiently enhanced the maturation of dendritic cells (DCs), which was further validated via cell-based vaccination assay. In the xenograft mouse model, oral administration of Huaier led to tumor-infiltrating lymphocytes (TILs) accumulation and significantly delayed tumor growth. Besides, depletion of endogenous T cells obviously abrogated the effect. Mechanically, Huaier could elicit endoplasmic reticulum (ER) stress-associated ICD through eIF2α signaling pathway. Further studies revealed that circCLASP1 was involved in the Huaier-induced immunogenicity by binding with PKR in the cytoplasm and thus blocking its degradation. Taken together, we highlighted an essential role of circCLASP1/PKR/eIF2α axis in Huaier-induced ICD. The findings of our study carried significant translational potential that Huaier might serve as a promising option to achieve long-term tumor remission in patients with TNBC.
    Keywords:  Huaier; ICD; PKR; circRNA; er stress
    DOI:  https://doi.org/10.3389/fcell.2022.913824
  9. Cancers (Basel). 2022 Jul 04. pii: 3274. [Epub ahead of print]14(13):
      This study aimed to elucidate the effects and underlying mechanisms of hepatitis B virus (HBV) preS mutations on hepatocarcinogenesis. The effect of the preS mutations on hepatocellular carcinoma (HCC) occurrence was evaluated using a prospective cohort study with 2114 HBV-infected patients, of whom 612 received antiviral treatments. The oncogenic functions of HBV preS mutations were investigated using cancer cell lines and Sleeping Beauty (SB) mouse models. RNA-sequencing and microarray were applied to identify key molecules involved in the mutant-induced carcinogenesis. Combo mutations G2950A/G2951A/A2962G/C2964A and C3116T/T31C significantly increased HCC risk in patients without antiviral treatment, whereas the preS2 deletion significantly increased HCC risk in patients with antiviral treatment. In SB mice, the preS1/preS2/S mutants induced a higher rate of tumor and higher serum levels of inflammatory cytokines than did wild-type counterpart. The preS1/preS2/S mutants induced altered gene expression profiles in the inflammation- and metabolism-related pathways, activated pathways of endoplasmic reticulum (ER) stress, affected the response to hypoxia, and upregulated the protein level of STAT3. Inhibiting the STAT3 pathway attenuated the effects of the preS1/preS2/S mutants on cell proliferation. G2950A/G2951A/A2962G/C2964A, C3116T/T31C, and preS2 deletion promote hepatocarcinogenesis via inducing ER stress, metabolism alteration, and STAT3 pathways, which might be translated into HCC prophylaxis.
    Keywords:  STAT3; carcinogenesis; hepatitis B virus; inflammation; preS mutation
    DOI:  https://doi.org/10.3390/cancers14133274
  10. Cell Mol Life Sci. 2022 Jul 07. 79(8): 403
      Endoplasmic reticulum (ER) stress initiates the unfolded protein response (UPR) and is decisive for tumor cell growth and tumor microenvironment (TME) maintenance. Tumor cells persistently undergo ER stress and could transmit it to the neighboring macrophages and surroundings. Tumor infiltrating macrophages can also adapt to the microenvironment variations to fulfill their highly energy-demanding and biological functions via ER stress. However, whether the different macrophage populations differentially sense ER stress and transmit ER stress to surrounding tumor cells has not yet been elucidated. Here, we aimed to investigate the role of transmissible ER stress, a novel regulator of intercellular communication in the TME. Murine bone marrow-derived macrophage (BMDM) can be polarized toward distinct functional endpoints termed classical (M1) and alternative (M2) activation, and their polarization status has been shown to be tightly correlated with their functional significance. We showed that tumor cells could receive the transmissible ER stress from two differentially polarized macrophage populations with different extent of ER stress activation. The proinflammatory M1-like macrophages respond to ER stress with less extent, however they could transmit more ER stress to tumor cells. Moreover, by analyzing the secreted components of two ER-stressed macrophage populations, we identified certain damage-associated molecular patterns (DAMPs), including S100A8 and S100A9, which are dominantly secreted by M1-like macrophages could lead to significant recipient tumor cells death in synergy with transferred ER stress.
    Keywords:  Intratumoral cell communications; MAPK; Macrophage polarization; Secreted molecules; TME editing; Tumor killing effects
    DOI:  https://doi.org/10.1007/s00018-022-04413-z
  11. BMC Cancer. 2022 Jul 06. 22(1): 735
       BACKGROUND: The therapeutic armamentarium in multiple myeloma has been significantly broadened by proteasome inhibitors, highly efficient means in controlling of multiple myeloma. Despite the developments of therapeutic regimen in treatment of multiple myeloma, still the complete remission requires a novel therapeutic strategy with significant difference in outcomes. Proteasome inhibitors induce autophagy and ER stress, both pivotal pathways for protein homeostasis. Recent studies showed that the IRE1α-XBP1 axis of the unfolded protein response (UPR) is up-regulated in multiple myeloma patients. In addition, XBP1 is crucial for the maintenance of viability of acute lymphoblastic leukemia (ALL).
    RESULTS: We analyzed the efficacy of targeting IRE1α-XBP1 axis and autophagy in combination with proteasome inhibitor, ixazomib in treatment of multiple myeloma. In this present study, we first show that targeting the IRE1α-XBP1 axis with small molecule inhibitors (STF-083010, A106) together with the ixazomib induces cell cycle arrest with an additive cytotoxic effect in multiple myeloma. Further, we examined the efficacy of autophagy inhibitors (bafilomycin A, BAF and chloroquine, CQ) together with ixazomib in multiple myeloma and observed that this combination treatment synergistically reduced cell viability in multiple myeloma cell lines (viable cells Ixa: 51.8 ± 3.3, Ixa + BAF: 18.3 ± 7.2, Ixa + CQ: 38.4 ± 3.7) and patient-derived multiple myeloma cells (Ixa: 59.6 ± 4.4, Ixa + CQ: 7.0 ± 2.1). We observed, however, that this combined strategy leads to activation of stress-induced c-Jun N-terminal kinase (JNK). Cytotoxicity mediated by combined proteasome and autophagy inhibition was reversed by addition of the specific JNK inhibitor JNK-In-8 (viable cells: Ixa + BAF: 11.6 ± 7.0, Ixa + BAF + JNK-In-8: 30.9 ± 6.1).
    CONCLUSION: In this study we showed that combined inhibition of autophagy and the proteasome synergistically induces cell death in multiple myeloma. Hence, we consider the implication of pharmaceutical inhibition of autophagy together with proteasome inhibition and UPR-directed therapy as promising novel in vitro treatment strategy against multiple myeloma.
    Keywords:  Autophagy; Jnk; Multiple myeloma; Proteasome inhibition
    DOI:  https://doi.org/10.1186/s12885-022-09775-y
  12. J Control Release. 2022 Jul 05. pii: S0168-3659(22)00401-1. [Epub ahead of print]
      Dendritic cells (DCs) vaccines are a major focus of future anti-tumor immunotherapy for their pivotal role in eliciting reactive tumor-specific T-cell responses. Tumor cell-mediated DCs (TC-DC) activation and tumor antigen-mediated DCs (TA-DC) activation are two conventional modes of DC vaccine construction in clinical studies. The former physiologically mimicks the tumor identification and rejection, significantly contributing to DC-based immune recognition and migration towards the complexed tumor microenvironment (TME). However, as immunosuppressive molecules may exist in TME, these TC-DC are generally characterized with aberrant lipid accumulation and inositol-requiring kinase 1α (IRE1α)-X-box binding protein 1 (XBP1) hyperactivation, which is provoked by overwhelming oxidative stress and endoplasmic reticulum (ER) stress, resulting in TC-DC malfunction. Oppositely, without contacting immunosuppressive TME, TA-DC vaccines perform better in T-cell priming and lymph nodes (LNs) homing, but are relatively weak in TME infiltration and identification. Herein, we prepared a KIRA6-loaded α-Tocopherol nanoemulsion (KT-NE), which simultaneously ameliorated oxidative stress and ER stress in the dysfunctional lipid-laden TC-DC. The TC-DC treated by KT-NE could maintain immunological activity, simultaneously, exhibited satisfactory chemotaxis towards LNs and tumor sites in vivo, and effectively suppressed malignant progression by unleashing activated tumor-reactive T cells. This study generated a new DC-vaccine that owned puissant aptitude to identify complicated TME as well as robust immunological activity to boost T-cell initiation, which may provide some insights into the design and application of DC-vaccines for clinical application.
    Keywords:  Anti-tumor efficacy; DC vaccine; Maintained immunological activity; Oxidative stress; XBP1
    DOI:  https://doi.org/10.1016/j.jconrel.2022.06.059
  13. Nutrients. 2022 Jun 27. pii: 2669. [Epub ahead of print]14(13):
      Metabolic regulation of cancer cell growth via AMP-activated protein kinase (AMPK) activation is a widely studied strategy for cancer treatment, including leukemias. Recent notions that naturally occurring compounds might have AMPK activity led to the search for nutraceuticals with potential AMPK-stimulating activity. We found that hydroxycitric acid (HCA), a natural, safe bioactive from the plant Garcinia gummi-gutta (cambogia), has potent AMPK activity in chronic myelogenous leukemia (CML) cell line K562. HCA is a known competitive inhibitor of ATP citrate lyase (ACLY) and is widely used as a weight loss inducer. We found that HCA was able to inhibit the growth of K562 cells in in vitro and in vivo xenograft models. At the mechanistic level, we identified a direct interaction between AMPK and ACLY that seems to be sensitive to HCA treatment. Additionally, HCA treatment resulted in the co-activation of AMPK and the mammalian target of rapamycin (mTOR) pathways. Moreover, we found an enhanced unfolded protein response as observed by activation of the eIF2α/ATF4 pathway that could explain the induction of cell cycle arrest at the G2/M phase and DNA fragmentation upon HCA treatment in K562 cells. Overall, these findings suggest HCA as a nutraceutical approach for the treatment of CMLs.
    Keywords:  AMPK; CML; hydroxycitric acid; nutraceuticals
    DOI:  https://doi.org/10.3390/nu14132669