bims-istrec Biomed News
on Integrated stress response in cancer
Issue of 2022–01–09
four papers selected by
the Vincenzo Ciminale lab, Istituto Oncologico Veneto



  1. J Cancer. 2022 ;13(1): 243-252
      Shikonin is a naphthoquinone pigment isolated from the root of Lithospermum erythrorhizon, which has displayed potent anti-tumor properties. However, the effects of shikonin in colorectal cancer cells have not been yet fully investigated. In this study, we demonstrated that shikonin significantly inhibited the activity of colorectal cancer cells in a time- and dose-dependent manner. The flow cytometry and western blot results indicated that shikonin induced cell apoptosis by down-regulating BCL-2 and activating caspase-3/9 and the cleavage of PARP. The expression of BiP and the PERK/elF2α/ATF4/CHOP and IRE1α /JNK signaling pathways were upregulated after shikonin treatment. The pre-treatment with N-acetyl cysteine significantly reduced the cytotoxicity of shikonin. Taken together, shikonin could inhibit proliferation of the colorectal cancer cell through the activation of ROS mediated-ER stress. The in vivo results showed that shikonin effectively inhibited tumor growth in the HCT-116 and HCT-15 xenograft models. In conclusion, shikonin inhibited the proliferation of colorectal cancer cells in vitro and in vivo and warrants future investigation.
    Keywords:  Apoptosis; Colorectal cancer; Endoplasmic reticulum stress; Shikonin
    DOI:  https://doi.org/10.7150/jca.65297
  2. Int J Biol Sci. 2022 ;18(1): 140-153
      Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Secretory leukocyte protease inhibitor (SLPI) has been reported to function as a regulatory factor in several cancers. However, its biological functions and underlying mechanisms in HCC remain to be uncovered. Here, we aimed to explore the effect of SLPI in HCC. In our study, we found that the mRNA and protein expression levels of SLPI were significantly down-regulated in HCC tissues and hepatoma cell lines and low level of SLPI predicted worse survival in our HCC cohorts. In term of function, silencing of SLPI markedly promoted whereas overexpression SLPI suppressed proliferation, migration and invasion capabilities of HCC cells in vitro, and ectopic expression of SLPI inhibited the tumorigenicity of HCC cells in vivo. Mechanistic studies demonstrated that SLPI played a protective role in HCC progression via activating endoplasmic reticulum stress (ER stress)-mediated apoptosis of hepatoma cells, which could be regulated by MAPK signaling pathways. In summary, our findings highlight that SLPI could serve as a potential prognostic biomarker and putative tumor suppressor by enhancing ER stress-induced apoptosis in HCC cells mediated by MAPK signaling pathways, which provides new insights into promising therapeutic targets for HCC treatment.
    Keywords:  Apoptosis; Endoplasmic reticulum stress; Hepatocellular carcinoma; MAPK.; SLPI; Secretory leukocyte protease inhibitor
    DOI:  https://doi.org/10.7150/ijbs.65676
  3. Mol Cancer Res. 2022 Jan 06. pii: molcanres.0374.2021. [Epub ahead of print]
      There is a continued need to identify novel therapeutic targets to prevent the mortality associated with prostate cancer. In this context, Mitochondrial Rho GTPase 2 (MIRO2) mRNA was upregulated in metastatic prostate cancer compared to localized tumors, and higher MIRO2 levels were correlated with poor patient survival. Using human cell lines that represent androgen-independent or -sensitive prostate cancer, we showed that MIRO2 depletion impaired cell growth, colony formation and tumor growth in mice. Network analysis of MIRO2's binding partners identified metabolism and cellular responses to extracellular stimuli as top over-represented pathways. The top hit on our screen, General Control Non-derepressible 1 (GCN1), was overexpressed in prostate cancer, and interacted with MIRO2 in prostate cancer cell lines and in primary prostate cancer cells. Functional analysis of MIRO2 mutations present in prostate cancer patients led to the identification of MIRO2 159L, which increased GCN1 binding. Importantly, MIRO2 was necessary for efficient GCN1-mediated GCN2 kinase signaling and induction of the transcription factor ATF4 levels. Further, MIRO2's effect on regulating prostate cancer cell growth was mediated by ATF4. Finally, levels of activated GCN2 and ATF4 were correlated with MIRO2 expression in prostate cancer xenografts. Both MIRO2 and activated GCN2 levels were higher in hypoxic areas of prostate cancer xenografts. Overall, we propose that targeting the MIRO2-GCN1 axis may be a valuable strategy to halt prostate cancer growth. Implications: MIRO2/GCN1/GCN2 constitute a novel mitochondrial signaling pathway that controls androgen-independent and androgen-sensitive prostate cancer cell growth.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-21-0374
  4. Front Oncol. 2021 ;11 740120
       Background: The role of activating transcription factor 4 (ATF4) underlying gastric cancer (GC) remains unclear. The purpose of this study was to investigate the expression levels and biological functions of ATF4 in GC.
    Methods: Expression of ATF4 was detected by quantitative PCR (qPCR), Western blotting, and immunohistochemistry. Cox regression was used for survival analysis and the construction of the nomogram. Immunofluorescence was used to identify the intracellular localization of ATF4. Knockdown and overexpression of ATF4 in GC cells followed by wound healing and Transwell assays, EdU and Calcein-AM/propidium iodide (PI) staining, and cell cycle detection were performed to examine its function in vitro. Transmission electron microscopy was performed to assess the autophagy levels upon ATF4 silencing. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA) were used to determine gene enrichment. SPSS 22.0 software, GraphPad Prism 7.0, and R version 3.6.1 were used for statistical analysis.
    Results: ATF4 expression was upregulated in GC cells and tissues compared with corresponding normal tissues. Survival analysis suggested that a high ATF4 expression was strongly associated with worse overall survival (OS) of GC patients (p < 0.001). The nomogram and the receiver operating characteristic (ROC) curves demonstrated that ATF4 was a highly sensitive and specific prognostic marker of GC [C-index = 0.797, area under the ROC curve (AUC) of 3-year OS = 0.855, and AUC of 5-year OS = 0.863]. In addition, ATF4 knockdown inhibited the cell proliferation, migration, invasion, and cell cycle progression of GC cells in vitro, while overexpression of ATF4 exerted the opposite effects. Bioinformatics analysis showed that ATF4 could promote GC progression possibly by regulating asparagine (Asn) metabolism and autophagy pathways. Further experiments indicated that ATF4 expression was significantly positively correlated with ASNS expression. The inhibition of cell clone formation in Asn-deprived conditions was more significant in the shATF4 group. Finally, we found that ATF4 promoted autophagy through regulating the mTORC1 pathway in GC cells.
    Conclusion: These findings suggested that ATF4 can significantly promote GC development and serve as an independent prognostic factor for GC.
    Keywords:  ATF4; activating transcription factor 4; autophagy; gastric cancer; metabolism; nomogram
    DOI:  https://doi.org/10.3389/fonc.2021.740120