bims-istrec Biomed News
on Integrated stress response in cancer
Issue of 2021–11–28
seven papers selected by
the Vincenzo Ciminale lab, Istituto Oncologico Veneto



  1. Int J Mol Sci. 2021 Nov 12. pii: 12264. [Epub ahead of print]22(22):
      Many anti-cancer drugs, including paclitaxel and etoposide, have originated and been developed from natural products, and traditional herbal medicines have fewer adverse effects and lesser toxicity than anti-tumor reagents. Therefore, we developed a novel complex herbal medicine, JI017, which mediates endoplasmic reticulum (ER) stress and apoptosis through the Nox4-PERK-CHOP signaling pathway in ovarian cancer cells. JI017 treatment increases the expression of GRP78, ATF4, and CHOP and the phosphorylation of PERK and eIF2α via the upregulation of Nox4. Furthermore, it increases the release of intracellular reactive oxygen species (ROS), the production of intracellular Ca2+, and the activation of exosomal GRP78 and cell lysate GRP78. Combination treatment using the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (TG) and JI017 reportedly induces increased ER stress and cell death in comparison to the control; however, knockdown experiments of PERK and CHOP indicated suppressed apoptosis and ER stress in JI017-treated ovarian cancer cells. Furthermore, targeting Nox4 using specific siRNA and pharmacological ROS inhibitors, including N-acetylcystein and diphenylene iodonium, blocked apoptosis and ER stress in JI017-treated ovarian cancer cells. In the radioresistant ovarian cancer model, when compared to JI017 alone, JI017 co-treatment with radiation induced greater cell death and resulted in overcoming radioresistance by inhibiting epithelial-mesenchymal-transition-related phenomena such as the reduction of E-cadherin and the increase of N-cadherin, vimentin, Slug, and Snail. These findings suggest that JI017 is a powerful anti-cancer drug for ovarian cancer treatment and that its combination treatment with radiation may be a novel therapeutic strategy for radioresistant ovarian cancer.
    Keywords:  ER stress; JI017; Nox4; ROS; exosome
    DOI:  https://doi.org/10.3390/ijms222212264
  2. Matrix Biol. 2021 Nov 20. pii: S0945-053X(21)00105-0. [Epub ahead of print]
      Activity of heparanase, endoglycosidase that cleaves heparan sulfate side chains in heparan sulfate proteoglycans, is highly implicated in tumor progression and metastasis. Heparanase inhibitors are therefore being evaluated clinically as anti-cancer therapeutics. Heparanase 2 (Hpa2) is a close homolog of heparanase that lacks HS-degrading activity and functions as an endogenous inhibitor of heparanase. As a result, Hpa2 appears to attenuate tumor growth but mechanisms that regulate Hpa2 expression and determine the ratio between heparanase and Hpa2 are largely unknown. We have recently reported that the expression of Hpa2 is induced by endoplasmic reticulum (ER) and proteotoxic stresses, but the mechanism(s) underlying Hpa2 gene regulation was obscure. Here we expand the notion that Hpa2 is regulated by conditions of stress. We report that while ER and hypoxia, each alone, resulted in a 3-7 fold increase in Hpa2 expression, combining ER stress and hypoxia resulted in a noticeable, over 40-fold increase in Hpa2 expression. A prominent induction of Hpa2 expression was also quantified in cells exposed to heat shock, proteotoxic stress, lysosomal stress, and chemotherapy (cisplatin), strongly implying that Hpa2 is regulated by conditions of stress. Furthermore, analyses of the Hpa2 gene promoter led to the identification of activating-transcription-factor 3 (ATF3) as a transcription factor that mediates Hpa2 induction by stress, thus revealing, for the first time, a molecular mechanism that underlies Hpa2 gene regulation. Induction of Hpa2 and ATF3 by conditions of stress that often accompany the rapid expansion of tumors is likely translated to improved survival of cancer patients.
    Keywords:  ATF3; ER stress; Heparanase 2; cisplatin; gene expression; hypoxia
    DOI:  https://doi.org/10.1016/j.matbio.2021.11.001
  3. Front Cell Dev Biol. 2021 ;9 742049
      Autophagy is a highly conserved intracellular process that preserves cellular homeostasis by mediating the lysosomal degradation of virtually any component of the cytoplasm. Autophagy is a key instrument of cellular response to several stresses, including endoplasmic reticulum (ER) stress. Cancer cells have developed high dependency on autophagy to overcome the hostile tumor microenvironment. Thus, pharmacological activation or inhibition of autophagy is emerging as a novel antitumor strategy. ERK5 is a novel member of the MAP kinase family that is activated in response to growth factors and different forms of stress. Recent work has pointed ERK5 as a major player controlling cancer cell proliferation and survival. Therefore small-molecule inhibitors of ERK5 have shown promising therapeutic potential in different cancer models. Here, we report for the first time ERK5 as a negative regulator of autophagy. Thus, ERK5 inhibition or silencing induced autophagy in a panel of human cancer cell lines with different mutation patterns. As reported previously, ERK5 inhibitors (ERK5i) induced apoptotic cancer cell death. Importantly, we found that autophagy mediates the cytotoxic effect of ERK5i, since ATG5-/- autophagy-deficient cells viability was not affected by these compounds. Mechanistically, ERK5i stimulated autophagic flux independently of the canonical regulators AMPK or mTORC1. Moreover, ERK5 inhibition resulted in ER stress and activation of the Unfolded Protein Response (UPR) pathways. Specifically, ERK5i induced expression of the ER luminal chaperone BiP (a hallmark of ER stress), the UPR markers CHOP and ATF4, and the spliced form of XBP1. Pharmacological inhibition of UPR with chemical chaperone TUDC, or ATF4 silencing, resulted in impaired ERK5i-mediated UPR, autophagy and cytotoxicity. Overall, our results suggest that ERK5 inhibition induces autophagy-mediated cancer cell death by activating ER stress. Since ERK5 inhibition sensitizes cancer cells and tumors to chemotherapy, future work will determine the relevance of UPR and autophagy in the combined use of chemotherapy and ERK5i to tackle Cancer.
    Keywords:  ERK5 kinase; MAPK signal pathway; UPR – unfolded protein response; antitumor drug; apoptosis; autopaghy; cancer cell survival; endoplamic reticulum stress
    DOI:  https://doi.org/10.3389/fcell.2021.742049
  4. Biology (Basel). 2021 Oct 22. pii: 1088. [Epub ahead of print]10(11):
      The pentose phosphate pathway (PPP) is the most common pathway in most cancer cells and stimulates antioxidant defense mechanisms and synthesis of biomolecule precursors. It is believed that cancer cells persistently ameliorate glucose flux into the PPP to maintain their anabolic requirements and adjust oxidative stress. TCGA analyses have indicated the upregulation of enzymes involved in PPP in lung cancer. Hence, the present study aimed to determine whether the pharmacological blockade of glucose 6-phosphate dehydrogenase (G6PD), the primary and rate-limiting enzyme involved in PPP, using 6-aminonicotinamide (6-AN), could induce antiproliferative activity in two lung cancer cell lines. Exposure to 6-AN suppressed lactate production and glucose consumption, modified the mitochondrial potential and redox balance, and thereby induced the endoplasmic reticulum (ER) stress to reduce lung cancer cell proliferation and govern cellular apoptosis. Collectively, this is the first study in which PPP blockade by 6-AN causes reactive oxygen species (ROS)-mediated apoptosis by ER stress in lung cancer cells. Further preclinical studies will be conducted to validate the biological applicability of these findings.
    Keywords:  endoplasmic reticulum stress; lung cancer; metabolic inhibitor; mitochondrial activity
    DOI:  https://doi.org/10.3390/biology10111088
  5. Cancer Lett. 2021 Nov 22. pii: S0304-3835(21)00589-9. [Epub ahead of print]
      The cancer cell mitochondrion is functionally different from that in normal cells and could be targeted to develop novel experimental therapeutics. The aryl-ureido fatty acid CTU (16({[4-chloro-3-(trifluoromethyl)phenyl]-carbamoyl}amino)hexadecanoic acid) is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells. Here we show that CTU rapidly depolarized the inner mitochondrial membrane, selectively inhibited complex III of the electron transport chain and increased reactive oxygen species (ROS) production. From RNA-seq analysis, endoplasmic reticulum (ER)-stress was a major activated pathway in CTU-treated cells and in MDA-MB-231 tumor xenografts from CTU-treated nu/nu mice. Mitochondrion-derived ROS activated the PERK-linked ER-stress pathway and induced the BH3-only protein NOXA leading to outer mitochondrial membrane (OMM) disruption. The lipid peroxyl scavenger α-tocopherol attenuated CTU-dependent ER-stress and apoptosis which confirmed the critical role of ROS. Oleic acid protected against CTU-mediated apoptosis by activating Mcl-1 expression, which increased NOXA sequestration and prevented OMM disruption. Taken together, CTU both uncouples mitochondrial electron transport and activates ROS production which promotes ER-stress-dependent OMM disruption and tumor cell death. Dual-mitochondrial targeting agents like CTU offer a novel approach for development of new anti-cancer therapeutics.
    Keywords:  Endoplasmic reticulum stress; Mitochondria; Pro-apoptotic agents; Reactive oxygen species; Ureido-fatty acids
    DOI:  https://doi.org/10.1016/j.canlet.2021.11.022
  6. Chem Biol Interact. 2021 Nov 19. pii: S0009-2797(21)00394-X. [Epub ahead of print]351 109756
      Evodiamine (EVO), a key active ingredient of the fruit of Evodiae fructus, is provided with antitumor effects (mainly cytotoxic effect) including proliferation inhibition, cell cycle arrest, apoptosis, and metastasis inhibition. Our study aims to explain the underlying role of TRPV1/Ca2+ in EVO-induced cytotoxicity in human gastric cancer cells. Human gastric cancer line BGC-823 was used to study EVO-induced cytotoxicity. Cell viability was examined using CCK-8 assay. Apoptosis was examined using Annexin V-FITC/PI staining assay. Intracellular ROS ([ROS]i) levels were examined using DCFH-DA assay. Mitochondrial morphology was examined using Mitotracker Green staining. Mitochondrial membrane potential (Δψm) were examined using JC-1 assay. Intracellular Ca2+ levels ([Ca2+]i) were examined using Fluo-4 AM assay. Mitochondrial ROS ([ROS]m)levels were examined using Mitotracker Green/MitoSOX Red staining. Mitochondrial Ca2+ ([Ca2+]m)levels were examined using Mitotracker Green/Rhod-2 Red staining. The protein levels was detected by Western blot. EVO exposure causes significant ROS generation and apoptotic cell death. Pretreatment of EUK134 significantly ameliorated EVO-induced apoptotic cell death. Furthermore, EVO exposure induced [ROS]i generation and mitochondrial dysfunction, including [ROS]m generation and Δψm dissipation, which can be significantly attenuated by pre-incubation of rotenone indicating that [ROS]m is the main source of EVO-induced intracellular ROS generation. Importantly, EVO-induced cytotoxicity was significantly ameliorated by intracellular Ca2+ chelation, confirming that EVO induces cell death through Ca2+ overload. Pharmacological and genetic inhibition of TRPV1 could significantly attenuate Ca2+ influx, ROS generation and apoptotic cell death induced by EVO exposure, while exogenous TRPV1 overexpression could augment the EVO-induced cytotoxicity. Moreover, genetic inhibition of mitochondrial calcium uniporter (MCU) attenuated EVO-induced cell death and mitochondrial dysfunction. EVO exposure induced endoplasmic reticulum (ER) stress demonstrated by the activation of PERK/CHOP in cells exposed to EVO, and PERK/CHOP activation was depleted by EUK134 pre-treatment. Our results support the concept that EVO induces ROS-dependent cytotoxicity via TRPV1/Ca2+ Pathway.
    Keywords:  Ca(2+); Cytotoxicity; Evodiamine; Human gastric cancer; Reactive oxygen species; Transient receptor potential vanilloid 1
    DOI:  https://doi.org/10.1016/j.cbi.2021.109756
  7. Pharmaceutics. 2021 Oct 30. pii: 1813. [Epub ahead of print]13(11):
      Diterpenoid plant hormone gibberellic acid (GA) plays an important role in regulation of plant growth and development and is commonly used in agriculture for activation of plant growth and food production. It is known that many plant-derived compounds have miscellaneous biological effects on animals and humans, influencing specific cellular functions and metabolic pathways. However, the effect of GA on animal and human cells remains controversial. We investigated the effect of GA on cultured human cell lines of epidermoid origin-immortalized non-tumorigenic keratinocytes HaCaT and carcinoma A431 cells. We found that at a non-toxic dose, GA upregulated the expression of genes associated with the ER stress response-CHOP, sXBP1, GRP87 in both cell lines, and ATF4 predominantly in A431 cells. We also showed that GA was more effective in upregulating the production of ER stress marker GRP78, autophagy marker LC3B-II, and differentiation markers involucrin and filaggrin in A431 cells than in HaCaT. We conclude that GA induces mild ER stress in both cell lines, followed by the activation of differentiation via upregulation of autophagy. However, in comparison with immortalized keratinocytes HaCaT, GA is more effective in inducing differentiation of carcinoma A431 cells, probably due to the inherently lower differentiation status of A431 cells. The activation of differentiation in poorly differentiated and highly malignant A431 cells by GA may lower the level of malignancy of these cells and decrease their tumorigenic potential.
    Keywords:  ER stress; autophagy; differentiation; epidermoid carcinoma; gibberellic acid; human keratinocytes; plant hormones
    DOI:  https://doi.org/10.3390/pharmaceutics13111813