bims-istrec Biomed News
on Integrated stress response in cancer
Issue of 2021‒10‒17
six papers selected by
Vincenzo Ciminale’s Lab
Istituto Oncologico Veneto


  1. Front Pharmacol. 2021 ;12 747837
      The integrated stress response (ISR) is an evolutionarily conserved intra-cellular signaling network which is activated in response to intrinsic and extrinsic stresses. Various stresses are sensed by four specialized kinases, PKR-like ER kinase (PERK), general control non-derepressible 2 (GCN2), double-stranded RNA-dependent protein kinase (PKR) and heme-regulated eIF2α kinase (HRI) that converge on phosphorylation of serine 51 of eIF2α. eIF2α phosphorylation causes a global reduction of protein synthesis and triggers the translation of specific mRNAs, including activating transcription factor 4 (ATF4). Although the ISR promotes cell survival and homeostasis, when stress is severe or prolonged the ISR signaling will shift to regulate cellular apoptosis. We review the ISR signaling pathway, regulation and importance in cancer therapy.
    Keywords:  ATF4; CHOP; apoptosis; cancer treatment; integrated stress responses
    DOI:  https://doi.org/10.3389/fphar.2021.747837
  2. J Cell Biochem. 2021 Oct 11.
      In recent years, long noncoding RNAs (lncRNAs) have been demonstrated to be important tumor-associated regulatory factors. LncRNA growth arrest-specific transcript 5 (Gas5) acts as an anti-oncogene in most cancers. Whether Gas5 acts as an oncogene or anti-oncogene in hepatocellular carcinoma (HCC) remains unclear. In the present study, the expression and role of Gas5 in HCC were investigated in vitro and in vivo. Lower expression levels of Gas5 were determined in HCC tissues and cells by quantitative reverse transcription-polymerase chain reaction. Overexpressed Gas 5 lentiviral vectors were constructed to analyze their influence on cell viability, migration, invasion, and apoptosis. Fluorescence in situ hybridization was used to identify the subcellular localization of Gas5. Protein complexes that bound to Gas5 were isolated from HepG2 cells through pull-down experiments and analyzed by mass spectrometry. A series of novel Gas5-interacting proteins were identified and bioinformatics analysis was carried out. These included ribosomal proteins, proteins involved in protein folding, sorting, and transportation in the ER, some nucleases and protein enzymes involved in gene transcription, translation, and other proteins with various functions.78 kDa glucose-regulated protein (GRP78) was identified as a direct target of Gas5 by Rip-qPCR and Western blot analysis assay. Gas5 inhibited HepG2 cell growth and induced cell apoptosis via upregulating CHOP to activate the ER stress signaling pathway. Further studies indicated that the knockdown of CHOP by shRNA partially reversed Gas5-mediated apoptosis in HepG2 cells. Magnetic resonance imaging showed that the ectopic expression of Gas5 inhibited the growth of HCC in nude mice. These findings suggest that Gas5 functions as a tumor suppressor and induces apoptosis through activation of ER stress by targeting the CHOP signal pathway in HCC.
    Keywords:  CHOP; GRP78; HepG2; endoplasmic reticulum stress; hepatocellular carcinoma; lncRNA Gas5
    DOI:  https://doi.org/10.1002/jcb.30159
  3. Front Cell Dev Biol. 2021 ;9 722960
      One contributor to the high mortality of osteosarcoma is its reduced sensitivity to chemotherapy, but the mechanism involved is unclear. Improving the sensitivity of osteosarcoma to chemotherapy is urgently needed to improve patient survival. We found that chemotherapy triggered apoptosis of human osteosarcoma cells in vitro and in vivo; this was accompanied by increased Sestrin2 expression. Importantly, autophagy was also enhanced with increased Sestrin2 expression. Based on this observation, we explored the potential role of Sestrin2 in autophagy of osteosarcoma. We found that Sestrin2 inhibited osteosarcoma cell apoptosis by promoting autophagy via inhibition of endoplasmic reticulum stress, and this process is closely related to the PERK-eIF2α-CHOP pathway. In addition, our study showed that low Sestrin2 expression can effectively reduce autophagy of human osteosarcoma cells after chemotherapy, increase p-mTOR expression, decrease Bcl-2 expression, promote osteosarcoma cell apoptosis, and slow down tumour progression in NU/NU mice. Sestrin2 activates autophagy by inhibiting mTOR via the PERK-eIF2α-CHOP pathway and inhibits apoptosis via Bcl-2. Therefore, our results explain one underlying mechanism of increasing the sensitivity of osteosarcoma to chemotherapy and suggest that Sestrin2 is a promising gene target.
    Keywords:  Sestrin2; apoptosis; autophagy; drug resistance; endoplasmic reticulum stress
    DOI:  https://doi.org/10.3389/fcell.2021.722960
  4. Neoplasma. 2021 Oct 14. pii: 210422N552. [Epub ahead of print]
      Previous studies have demonstrated that endoplasmic reticulum stress (ERS) might play a major role in inducing cellular autophagy and apoptosis in multiple types of cancer. Herein, we observed that trans-3, 5, 4'-trimethoxystilbene (TMS) exposure facilitated apoptotic cell death and ERS-mediated autophagy in colon cancer SW480 and HCT116 cells. Interestingly, our data demonstrated that ERS was not involved in TMS-induced apoptosis. However, ERS notably induced protective autophagy in SW480 and HCT116 cells. In addition, inhibiting cellular ERS significantly improved the pro-apoptotic effects of TMS. Thus, our results indicated that TMS-mediated autophagy was dependent on ERS, while apoptotic cell death might be induced in the ERS-independent pathway after TMS treatment. Generally, inhibiting ERS-mediated autophagy can enhance the pro-apoptotic effects of TMS. TMS might be a potential therapeutic agent for colon cancer treatment.
    DOI:  https://doi.org/10.4149/neo_2021_210422N552
  5. Int J Mol Med. 2021 Dec;pii: 213. [Epub ahead of print]48(6):
      Multiple myeloma (MM) is an aggressive B cell malignancy. Substantial progress has been made in the therapeutic context for patients with MM, however it still represents an incurable disease due to drug resistance and recurrence. Development of more effective or synergistic therapeutic approaches undoubtedly represents an unmet clinical need. Tomentosin is a bioactive natural sesquiterpene lactone extracted by various plants with therapeutic properties, including anti‑neoplastic effects. In the present study, the potential antitumor activity of tomentosin was evaluated on the human RPMI‑8226 cell line, treated with increasing tomentosin concentration for cytotoxicity screening. The data suggested that both cell cycle arrest and cell apoptosis could explain the antiproliferative effects of tomentosin and may result in the inhibition of RPMI‑8226 cell viability. To assess differentially expressed genes contributing to tomentosin activity and identify its mechanism of action, a microarray gene expression profile was performed, identifying 126 genes deregulated by tomentosin. To address the systems biology and identify how tomentosin deregulates gene expression in MM from a systems perspective, all deregulated genes were submitted to enrichment and molecular network analysis. The Protein‑Protein Interaction (PPI) network analysis showed that tomentosin in human MM induced the downregulation of genes involved in several pathways known to lead immune‑system processes, such as cytokine‑cytokine receptor interaction, chemokine or NF‑κB signaling pathway, as well as genes involved in pathways playing a central role in cellular neoplastic processes, such as growth, proliferation, migration, invasion and apoptosis. Tomentosin also induced endoplasmic reticulum stress via upregulation of cyclic AMP‑dependent transcription factor ATF‑4 and DNA damage‑inducible transcript 3 protein genes, suggesting that in the presence of tomentosin the protective unfolded protein response signaling may induce cell apoptosis. The functional connections analysis executed using the Connectivity Map tool, suggested that the effects of tomentosin on RPMI‑8226 cells might be similar to those exerted by heat shock proteins inhibitors. Taken together, these data suggested that tomentosin may be a potential drug candidate for the treatment of MM.
    Keywords:  DNA damage‑inducible transcript 3 protein; Protein‑Protein Interaction network; apoptosis; cyclic AMP‑dependent transcription factor ATF‑4; cytotoxicity; gene expression profiling; multiple myeloma; tomentosin
    DOI:  https://doi.org/10.3892/ijmm.2021.5046
  6. Front Oncol. 2021 ;11 720261
      Multiple myeloma (MM) is a malignant cancer with an increasing in incidence that can be alleviated through bortezomib (BTZ) treatment. Activating transcription factor 3 (ATF3) plays a major role in cancer development. Moreover, microRNAs (miRNAs) regulate carcinogenic pathways, apoptosis, and programmed necrotic cell death. However, the detailed mechanism by which ATF3 modulates BTZ drug sensitivity/resistance remains elusive. In the current study, expression of ATF3 was significantly increased under BTZ treatment in a dose-dependent manner in MM cell lines. In addition, ATF3 could regulate cell apoptosis under BTZ treatment. The effect of ATF3 was negatively regulated by its binding miRNA, miR-135a-5p. When either ATF3 was silenced or miR-135a-5p mimics were added to MM cells, they partially lost sensitivity to BTZ treatment. This was accompanied by low levels of Noxa, CHOP, and DR5, and a decrease in mitochondrial membrane potential. These results revealed the combinatorial regulatory patterns of ATF3 and miR-135a-5p in the regulatory protein interactome, which indicated a clinical significance of the miR-135a-5p-ATF3 protein interaction network in BTZ therapy. This study provides potential evidence for further investigation into BTZ resistance.
    Keywords:  ATF3; apoptosis; bortezomib; miR-135a-5p; multiple myeloma
    DOI:  https://doi.org/10.3389/fonc.2021.720261