Am J Cancer Res. 2024 ;14(6): 2790-2804
Metastasis is a principal factor in the poor prognosis of colorectal cancer. Recent studies have found microbial metabolites regulate colorectal cancer metastasis. By analyzing metabolomics data, we identified an essential fecal metabolite citraconate that potentially promotes colorectal cancer metastasis. Next, we tried to reveal its effect on colorectal cancer and the underlying mechanism. Firstly, the response of colorectal cancer cells (HCT116 and MC38 cells) to citraconate was assessed by Cell Counting Kit-8 assay, clonogenic assay, transwell migration and invasion assay. Moreover, we utilized an intra-splenic injection model to evaluate the effect of citraconate on colorectal cancer liver metastasis in vivo. Then molecular approaches were employed, including RNA sequencing, mass spectrometry-based metabolomics, western blot, quantitative real-time PCR, cell ferrous iron colorimetric assay and intracellular malondialdehyde measurement. In vitro, citraconate promotes the growth of colorectal cancer cells. In vivo, citraconate aggravated liver metastasis of colorectal cancer. Mechanistically, downstream genes of NRF2, NQO1, GCLC, and GCLM high expression induced by citraconate resulted in resistance to ferroptosis of colorectal cancer cells. In summary, citraconate promotes the malignant progression of colorectal cancer through NRF2-mediated ferroptosis resistance in colorectal cancer cells. Furthermore, our study indicates that fecal metabolite may be crucial in colorectal cancer development.
Keywords: Citraconate; colorectal cancer; ferroptosis; malignant progression